Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 May 2024 | Story Leonie Bolleurs | Photo supplied
Dr Yolandi Schoeman
Dr Yolandi Schoeman believes the project is directly contributing to the regeneration and conservation of biodiversity, innovating towards creating unique urban biodiversity markets, and creating a thriving natural habitat that supports ecological balance and resilience.

Tim Briercliffe, Secretary General of the International Association of Horticultural Producers (AIPH), recently congratulated the City of Tshwane for the work done on urban greening and nature-based solutions that resulted in its entry: ‘Republic of South Africa City of Tshwane Pretoria East Urban Biosphere Reserve’ being selected as one of 21 finalists in the Living Green for Biodiversity category of the AIPH World Green City Awards 2024.

The list of finalists comprises the three highest-scoring entries in each of the seven categories. The Tshwane project was entered in the Living Green for Biodiversity and Urban Ecosystem Restoration category as well as the Living Green for Urban Infrastructure and Liveability category.

Dr Yolandi Schoeman, Postdoctoral Fellow/Researcher in Ecological Engineering in the centres for Mineral Biogeochemistry and Environmental Management and the Ecological Engineering Institute of Africa at the University of the Free State (UFS), played a critical role in conceptualising and driving the bio-intelligent approach that is integral to the Tshwane SA Biosphere Reserve project.

She states that being part of a project recognised as a finalist for such a prestigious global award is profoundly gratifying. “It underscores the importance and urgency of our work in ecological engineering and biodiversity conservation, validating our efforts to create resilient urban ecosystems that can inspire similar initiatives globally.”

Enhancing urban sustainability

According to her, it is one of the university’s flagship projects in Gauteng. “Our team was pivotal in developing the methodological framework that facilitated the integration of ecological, economic, social, and technological dimensions to effectively address climate change, biodiversity loss, disconnections in coupled human and natural systems, and enhance urban sustainability.”

Dr Schoeman says the project was initiated in the early stages of their investigations into sustainable urban development, with notable developments in 2023, as highlighted during the City of Tshwane Climate Change and Research Conference. She indicates that the project is continuing, with phases that include various baseline research activities, active ecosystem regeneration, continuous monitoring, roll-out of a unique biodiversity citizen science approach, integrated and inclusive stakeholder involvement, creating a unique urban biodiversity market, awareness and capacity building, and moving towards formally applying to the International Union for Conservation of Nature (IUCN) for the formal recognition of the urban biosphere region within the greater Pretoria East area.

She remarks that her inspiration to engage in this project stemmed from a commitment to address the multifaceted challenges posed by climate change and biodiversity loss, particularly in urban settings. “The most remarkable aspect of the project is its innovative approach to integrating urban development with ecological engineering, fostering a sustainable coexistence between humans and nature that serves as a model for cities worldwide,” she says.

She is excited about the impact of the work that has been done. Not only is the project directly contributing to the regeneration and conservation of biodiversity, creating a thriving natural habitat that supports ecological balance and resilience, but it is also impacting the greater Tshwane community. Dr Schoeman believes that the project significantly enhances community engagement and participation, which in turn fosters greater awareness and responsibility towards sustainable living practices.

Crafting practical, impactful solutions

Besides her instrumental role in making an impact, Dr Schoeman also enjoyed the project, particularly the opportunity to collaborate with a diverse group of stakeholders, including local communities, government bodies, and fellow researchers. “This multidisciplinary collaboration has not only enriched the project but has also been instrumental in crafting practical, impactful solutions tailored to the specific needs and characteristics of Tshwane,” she comments.

As a finalist in the Living Green for Biodiversity category of the AIPH World Green City Awards 2024, the city of Tshwane will receive a Highly Commended certificate at an awards ceremony in September in Utrecht, the Netherlands, and will ultimately have the opportunity to win the title of Grand Winner of the 2024 edition of the AIPH World Green City Awards.

News Archive

Mushrooms, from gourmet food for humans to fodder for animals
2016-12-19

Description: Mushroom research photo 2 Tags: Mushroom research photo 2 

From the UFS Department of Microbial Biochemical and
Food Biotechnology are, from left: Prof Bennie Viljoen,
researcher,
MSc student Christie van der Berg,
and PhD student Christopher Rothman
Photo: Anja Aucamp

Mushrooms have so many medicinal applications that humans have a substance in hand to promote long healthy lives. And it is not only humans who benefit from these macrofungi growing mostly in dark spaces.

“The substrate applied for growing the mushrooms can be used as animal fodder. Keeping all the medicinal values intact, these are transferred to feed goats as a supplement to their daily diet,” said Prof Bennie Viljoen, researcher in the Department of Microbial, Biochemical and Food Biotechnology at the UFS.

Curiosity and a humble start
“The entire mushroom project started two years ago as a sideline of curiosity to grow edible gourmet mushrooms for my own consumption. I was also intrigued by a friend who ate these mushrooms in their dried form to support his immune system, claiming he never gets sick. The sideline quickly changed when we discovered the interesting world of mushrooms and postgraduate students became involved.

“Since these humble beginnings we have rapidly expanded with the financial help of the Technology Transfer Office to a small enterprise with zero waste,” said Prof Viljoen. The research group also has many collaborators in the industry with full support from a nutraceutical company, an animal feed company and a mushroom growers’ association.

Prof Viljoen and his team’s mushroom research has various aspects.

Growing the tastiest edible mushrooms possible
“We are growing gourmet mushrooms on agricultural waste under controlled environmental conditions to achieve the tastiest edible mushrooms possible. This group of mushrooms is comprised of the King, Pink, Golden, Grey, Blue and Brown Oysters. Other than the research results we have obtained, this part is mainly governed by the postgraduate students running it as a business with the intention to share in the profit from excess mushrooms because they lack research bursaries. The mushrooms are sold to restaurants and food markets at weekends,” said Prof Viljoen.

Description: Mushroom research photo 1 Tags: Mushroom research photo 1 

Photo: Anja Aucamp

Natural alternative for the treatment of various ailments
“The second entity of research encompasses the growth and application of medicinal mushrooms. Throughout history, mushrooms have been used as a natural alternative for the treatment of various ailments. Nowadays, macrofungi are known to be a source of bioactive compounds of medicinal value. These include prevention or alleviation of heart disease, inhibition of platelet aggregation, reduction of blood glucose levels, reduction of blood cholesterol and the prevention or alleviation of infections caused by bacterial, viral, fungal and parasitic pathogens. All of these properties can be enjoyed by capsulation of liquid concentrates or dried powdered mushrooms, as we recently confirmed by trial efforts which are defined as mushroom nutriceuticals,” he said.

Their research focuses on six different medicinal genera, each with specific medicinal attributes:
1.    Maitake: the most dominant property exhibited by this specific mushroom is the reduction of blood pressure as well as cholesterol. Other medicinal properties include anticancer, antidiabetic and immunomodulating while it may also improve the health of HIV patients.
2.    The Turkey Tail mushroom is known for its activity against various tumours and viruses as well as its antioxidant properties.
3.    Shiitake mushrooms have antioxidant properties and are capable of lowering blood serum cholesterol (BSC). The mushroom produces a water-soluble polysaccharide, lentinan, considered to be responsible for anticancer, antimicrobial and antitumour properties.
4.    The Grey Oyster mushroom has medicinal properties such as anticholesterol, antidiabetic, antimicrobial, antioxidant, antitumour and immunomodulatory properties.
5.    Recently there has been an increased interest in the Lion’s Mane mushroom which contains nerve growth factors (NGF) and may be applied as a possible treatment of Alzheimer’s disease as this compound seems to have the ability to re-grow and rebuild myelin by stimulating neurons.
6.    Reishi mushrooms are considered to be the mushrooms with the most medicinal properties due to their enhancing health effects such as treatment of cancer, as well as increasing longevity, resistance and recovery from diseases.


Description: Mushroom research photo 3 Tags: Mushroom research photo 3


Valuable entity for the agricultural sector
Another research focus is the bio-mushroom application phenome, to break down trees growing as encroaching plants. This research is potentially very valuable for the agricultural sector in the areas where Acacia is an encroaching problem. With this process, waste products are upgraded to a usable state. “It is therefore, possible to convert woody biomass with a low digestibility and limited availability of nutrients into high-quality animal fodder. By carefully selecting the right combination of fungus species to ferment agro-wastes, a whole host of advantages could become inherently part of the substrate. Mushrooms could become a biotechnological tool used to ‘inject’ the substrate that will be fed to animals with nutrition and/or medicine as the need and situation dictates,” said Prof Viljoen.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept