Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 May 2024 | Story Leonie Bolleurs | Photo supplied
Dr Yolandi Schoeman
Dr Yolandi Schoeman believes the project is directly contributing to the regeneration and conservation of biodiversity, innovating towards creating unique urban biodiversity markets, and creating a thriving natural habitat that supports ecological balance and resilience.

Tim Briercliffe, Secretary General of the International Association of Horticultural Producers (AIPH), recently congratulated the City of Tshwane for the work done on urban greening and nature-based solutions that resulted in its entry: ‘Republic of South Africa City of Tshwane Pretoria East Urban Biosphere Reserve’ being selected as one of 21 finalists in the Living Green for Biodiversity category of the AIPH World Green City Awards 2024.

The list of finalists comprises the three highest-scoring entries in each of the seven categories. The Tshwane project was entered in the Living Green for Biodiversity and Urban Ecosystem Restoration category as well as the Living Green for Urban Infrastructure and Liveability category.

Dr Yolandi Schoeman, Postdoctoral Fellow/Researcher in Ecological Engineering in the centres for Mineral Biogeochemistry and Environmental Management and the Ecological Engineering Institute of Africa at the University of the Free State (UFS), played a critical role in conceptualising and driving the bio-intelligent approach that is integral to the Tshwane SA Biosphere Reserve project.

She states that being part of a project recognised as a finalist for such a prestigious global award is profoundly gratifying. “It underscores the importance and urgency of our work in ecological engineering and biodiversity conservation, validating our efforts to create resilient urban ecosystems that can inspire similar initiatives globally.”

Enhancing urban sustainability

According to her, it is one of the university’s flagship projects in Gauteng. “Our team was pivotal in developing the methodological framework that facilitated the integration of ecological, economic, social, and technological dimensions to effectively address climate change, biodiversity loss, disconnections in coupled human and natural systems, and enhance urban sustainability.”

Dr Schoeman says the project was initiated in the early stages of their investigations into sustainable urban development, with notable developments in 2023, as highlighted during the City of Tshwane Climate Change and Research Conference. She indicates that the project is continuing, with phases that include various baseline research activities, active ecosystem regeneration, continuous monitoring, roll-out of a unique biodiversity citizen science approach, integrated and inclusive stakeholder involvement, creating a unique urban biodiversity market, awareness and capacity building, and moving towards formally applying to the International Union for Conservation of Nature (IUCN) for the formal recognition of the urban biosphere region within the greater Pretoria East area.

She remarks that her inspiration to engage in this project stemmed from a commitment to address the multifaceted challenges posed by climate change and biodiversity loss, particularly in urban settings. “The most remarkable aspect of the project is its innovative approach to integrating urban development with ecological engineering, fostering a sustainable coexistence between humans and nature that serves as a model for cities worldwide,” she says.

She is excited about the impact of the work that has been done. Not only is the project directly contributing to the regeneration and conservation of biodiversity, creating a thriving natural habitat that supports ecological balance and resilience, but it is also impacting the greater Tshwane community. Dr Schoeman believes that the project significantly enhances community engagement and participation, which in turn fosters greater awareness and responsibility towards sustainable living practices.

Crafting practical, impactful solutions

Besides her instrumental role in making an impact, Dr Schoeman also enjoyed the project, particularly the opportunity to collaborate with a diverse group of stakeholders, including local communities, government bodies, and fellow researchers. “This multidisciplinary collaboration has not only enriched the project but has also been instrumental in crafting practical, impactful solutions tailored to the specific needs and characteristics of Tshwane,” she comments.

As a finalist in the Living Green for Biodiversity category of the AIPH World Green City Awards 2024, the city of Tshwane will receive a Highly Commended certificate at an awards ceremony in September in Utrecht, the Netherlands, and will ultimately have the opportunity to win the title of Grand Winner of the 2024 edition of the AIPH World Green City Awards.

News Archive

Water erosion research help determine future of dams
2017-03-07

Description: Dr Jay le Roux Tags: Dr Jay le Roux

Dr Jay le Roux, one of 31 new NRF-rated
researchers at the University of the Free State,
aims for a higher rating from the NRF.
Photo: Rulanzen Martin

“This rating will motivate me to do more research, to improve outcomes, and to aim for a higher C-rating.” This was the response of Dr Jay le Roux, who was recently graded as an Y2-rated researcher by the National Research Foundation (NRF).

Dr Le Roux, senior lecturer in the Department of Geography at the University of the Free State (UFS), is one of 31 new NRF-rated researchers at the UFS. “This grading will make it possible to focus on more specific research during field research and to come in contact with other experts. Researchers are graded on their potential or contribution in their respective fields,” he said.

Research assess different techniques
His research on water erosion risk in South Africa (SA) is a methodological framework with three hierarchal levels presented. It was done in collaboration with the University of Pretoria (UP), Water Research Commission, Department of Agriculture, Forestry and Fisheries, and recently Rhodes University and the Department of Environmental Affairs. Dr Le Roux was registered for 5 years at UP, while working full-time for the Agricultural Research Council – Institute for Soil, Climate and Water (ARC-ISCW).

Water erosion risk assessment in South Africa: towards a methodological framework
, illustrates the most feasible erosion assessment techniques and input datasets that can be used to map water erosion features in SA. It also emphasises the simplicity required for application at a regional scale, with proper incorporation of the most important erosion-causal factors.

The main feature that distinguishes this approach from previous studies is the fact that this study interprets erosion features as individual sediment sources. Modelling the sediment yield contribution from gully erosion (also known as dongas) with emphasis on connectivity and sediment transport, can be considered as an important step towards the assessment of sediment produce at regional scale. 
 
Dams a pivotal element in river networks

Soil is an important, but limited natural resource in SA. Soil erosion not only involves loss of fertile topsoil and reduction of soil productivity, but is also coupled with serious off-site impacts related to increased mobilisation of sediment and delivery to rivers.

The siltation of dams is a big problem in SA, especially dams that are located in eroded catchment areas. Dr Le Roux recently developed a model to assess sediment yield contribution from gully erosion at a large catchment scale. “The Mzimvubu River Catchment is the only large river network in SA on record without a dam.” The flow and sediment yield in the catchment made it possible to estimate dam life expectancies on between 43 and 55 years for future dams in the area.
 
Future model to assess soil erosion
“I plan to finalise a soil erosion model that will determine the sediment yield of gully erosion on a bigger scale.” It will be useful to determine the lifespan of dams where gully erosion is a big problem. Two of his PhD students are currently working on project proposals to assess soil erosion with the help of remote sensing techniques.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept