Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 May 2024 | Story Anthony Mthembu | Photo Jon Vincent
Ibali
Educators, academics, and policymakers in attendance at the Ibali Education Stakeholders Forum.

The Centre for Development Support (CDS) at the University of the Free State (UFS), in collaboration with Ibali, hosted the Ibali Education Stakeholders Forum on 10 May 2024 at the Centenary Complex on the UFS Bloemfontein Campus. 

According to Prof Faith Mkwananzi, Associate Professor at the CDS, the event, an initiative of the Ibali Project, aimed to ‘’inform and disseminate project findings to individuals with an interest in educational exclusion and inclusion. It also served as a forum for stakeholders to share insights on the matter. “ The forum was well attended by educators, school leaders, academics, and policymakers from the Free State. Additionally, the event saw representation from Ibali, including Dr Alison Buckler, Deputy Director of the Centre for the Study of Global Development (CSGD) at The Open University.

A platform for engagement

Discussions at the forum focused on creating inclusive learning environments for learners and students within the province and beyond. Stakeholders had the opportunity to discuss the challenges they face in fostering inclusive learning spaces through panel discussions and presentations. ’’The involvement of stakeholders and presentation of diverse perspectives contributed to a robust engagement, indicating that individuals and organisations are motivated to support an inclusive and sustainable education system at every level in South Africa,’’ said Prof Mkwananzi.

The Ibali initiative

Dr Buckler explained that Ibali is a network of researchers, practitioners, and educators interested in how storytelling can support different understandings around complex issues in education and development. One of Ibali’s projects, funded by the United Kingdom Arts and Humanities Research Council (AHRC), explores what inclusion and exclusion look like within education in countries like Nigeria, South Africa, and the United Kingdom.

Insights from the engagement

Dr Buckler highlighted several insights from the forum. She noted that inclusive practice can manifest in various ways. ‘’People talked about mixing groups of students in lectures, creating a supportive community for their deaf sibling, mainstream schools inviting children from ‘special schools’ for play sessions, and so on,’’ she said. Moreover, she emphasised that a key takeaway is that “underpinning hugely diverse examples of inclusive practice are a fairly small number of key principles around empathy, communication, ubuntu, and seeing someone as whole instead of defining people by certain characteristics that align with inclusion policies.”

As the engagement session concluded, both Prof Mkwananzi and Dr Buckler expressed hope that stakeholders could learn from one another’s experiences, fostering a more inclusive educational environment.  

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept