Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2024 | Story Jacky Tshokwe | Photo Supplied
Dr Mariana Erasmus
Dr Mariana Erasmus (Vice Director, CMBG) demonstrates some of the equipment in the newly established, state-of-the-art laboratories at the Centre for Mineral Biogeochemistry.

The University of the Free State (UFS) recently hosted a landmark event-the national launch of the South African Biogeochemistry Research Infrastructure Platform (BIOGRIP) - in the Centenary Complex on its Bloemfontein Campus. This significant occasion marked the establishment of the Centre for Mineral Biogeochemistry at the UFS and underscored South Africa’s growing commitment to biogeochemistry research.

Prof Anthea Rhoda welcomed the distinguished gathering of scientists, students, industry leaders, and stakeholders, highlighting the launch as a collaborative milestone in South Africa's scientific journey. In her address, Prof Rhoda emphasised the importance of the interdisciplinary nature of biogeochemistry, where biology, geology, and chemistry converge to offer insights into critical issues such as climate change, water quality, and soil health. She remarked on the necessity of collaboration, explaining that BIOGRIP’s platform, built on shared resources and expertise, exemplifies the power of uniting across institutional boundaries to accelerate impactful discoveries.

The programme featured insightful scientific talks by leading experts, each focusing on how biogeochemistry addresses key environmental issues such as sustainability and resource management. These presentations reinforced BIOGRIP’s commitment to advancing knowledge that can influence policy and improve practices.

Attendees were also given guided tours of the state-of-the-art laboratories in the Centre for Mineral Biogeochemistry, which provided a behind-the-scenes look at the advanced tools and methods employed in studying interactions between minerals, biology, and the environment. For many, this was a highlight, as they observed firsthand how biogeochemical research is conducted and contributes to soil health, pollution control, and environmental conservation.

The launch provided ample networking opportunities, fostering connections among academics, government representatives, industry professionals, and environmental organisations. Over a catered lunch, participants engaged in vibrant discussions about potential collaborations and the role of biogeochemistry in addressing South Africa’s environmental challenges.

The BIOGRIP national launch stands as a milestone event, not only for the UFS, but for the broader South African scientific community. With the establishment of this research platform, South Africa is well-positioned to tackle pressing environmental issues through innovative research and cross-sector collaboration. The event left attendees inspired and motivated, setting an optimistic tone for the future of biogeochemistry research in the region.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept