Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2024 | Story Jacky Tshokwe | Photo Supplied
Dr Mariana Erasmus
Dr Mariana Erasmus (Vice Director, CMBG) demonstrates some of the equipment in the newly established, state-of-the-art laboratories at the Centre for Mineral Biogeochemistry.

The University of the Free State (UFS) recently hosted a landmark event-the national launch of the South African Biogeochemistry Research Infrastructure Platform (BIOGRIP) - in the Centenary Complex on its Bloemfontein Campus. This significant occasion marked the establishment of the Centre for Mineral Biogeochemistry at the UFS and underscored South Africa’s growing commitment to biogeochemistry research.

Prof Anthea Rhoda welcomed the distinguished gathering of scientists, students, industry leaders, and stakeholders, highlighting the launch as a collaborative milestone in South Africa's scientific journey. In her address, Prof Rhoda emphasised the importance of the interdisciplinary nature of biogeochemistry, where biology, geology, and chemistry converge to offer insights into critical issues such as climate change, water quality, and soil health. She remarked on the necessity of collaboration, explaining that BIOGRIP’s platform, built on shared resources and expertise, exemplifies the power of uniting across institutional boundaries to accelerate impactful discoveries.

The programme featured insightful scientific talks by leading experts, each focusing on how biogeochemistry addresses key environmental issues such as sustainability and resource management. These presentations reinforced BIOGRIP’s commitment to advancing knowledge that can influence policy and improve practices.

Attendees were also given guided tours of the state-of-the-art laboratories in the Centre for Mineral Biogeochemistry, which provided a behind-the-scenes look at the advanced tools and methods employed in studying interactions between minerals, biology, and the environment. For many, this was a highlight, as they observed firsthand how biogeochemical research is conducted and contributes to soil health, pollution control, and environmental conservation.

The launch provided ample networking opportunities, fostering connections among academics, government representatives, industry professionals, and environmental organisations. Over a catered lunch, participants engaged in vibrant discussions about potential collaborations and the role of biogeochemistry in addressing South Africa’s environmental challenges.

The BIOGRIP national launch stands as a milestone event, not only for the UFS, but for the broader South African scientific community. With the establishment of this research platform, South Africa is well-positioned to tackle pressing environmental issues through innovative research and cross-sector collaboration. The event left attendees inspired and motivated, setting an optimistic tone for the future of biogeochemistry research in the region.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept