Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2024 | Story Jacky Tshokwe | Photo Supplied
Dr Mariana Erasmus
Dr Mariana Erasmus (Vice Director, CMBG) demonstrates some of the equipment in the newly established, state-of-the-art laboratories at the Centre for Mineral Biogeochemistry.

The University of the Free State (UFS) recently hosted a landmark event-the national launch of the South African Biogeochemistry Research Infrastructure Platform (BIOGRIP) - in the Centenary Complex on its Bloemfontein Campus. This significant occasion marked the establishment of the Centre for Mineral Biogeochemistry at the UFS and underscored South Africa’s growing commitment to biogeochemistry research.

Prof Anthea Rhoda welcomed the distinguished gathering of scientists, students, industry leaders, and stakeholders, highlighting the launch as a collaborative milestone in South Africa's scientific journey. In her address, Prof Rhoda emphasised the importance of the interdisciplinary nature of biogeochemistry, where biology, geology, and chemistry converge to offer insights into critical issues such as climate change, water quality, and soil health. She remarked on the necessity of collaboration, explaining that BIOGRIP’s platform, built on shared resources and expertise, exemplifies the power of uniting across institutional boundaries to accelerate impactful discoveries.

The programme featured insightful scientific talks by leading experts, each focusing on how biogeochemistry addresses key environmental issues such as sustainability and resource management. These presentations reinforced BIOGRIP’s commitment to advancing knowledge that can influence policy and improve practices.

Attendees were also given guided tours of the state-of-the-art laboratories in the Centre for Mineral Biogeochemistry, which provided a behind-the-scenes look at the advanced tools and methods employed in studying interactions between minerals, biology, and the environment. For many, this was a highlight, as they observed firsthand how biogeochemical research is conducted and contributes to soil health, pollution control, and environmental conservation.

The launch provided ample networking opportunities, fostering connections among academics, government representatives, industry professionals, and environmental organisations. Over a catered lunch, participants engaged in vibrant discussions about potential collaborations and the role of biogeochemistry in addressing South Africa’s environmental challenges.

The BIOGRIP national launch stands as a milestone event, not only for the UFS, but for the broader South African scientific community. With the establishment of this research platform, South Africa is well-positioned to tackle pressing environmental issues through innovative research and cross-sector collaboration. The event left attendees inspired and motivated, setting an optimistic tone for the future of biogeochemistry research in the region.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept