Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2024 | Story Jacky Tshokwe | Photo Supplied
Dr Mariana Erasmus
Dr Mariana Erasmus (Vice Director, CMBG) demonstrates some of the equipment in the newly established, state-of-the-art laboratories at the Centre for Mineral Biogeochemistry.

The University of the Free State (UFS) recently hosted a landmark event-the national launch of the South African Biogeochemistry Research Infrastructure Platform (BIOGRIP) - in the Centenary Complex on its Bloemfontein Campus. This significant occasion marked the establishment of the Centre for Mineral Biogeochemistry at the UFS and underscored South Africa’s growing commitment to biogeochemistry research.

Prof Anthea Rhoda welcomed the distinguished gathering of scientists, students, industry leaders, and stakeholders, highlighting the launch as a collaborative milestone in South Africa's scientific journey. In her address, Prof Rhoda emphasised the importance of the interdisciplinary nature of biogeochemistry, where biology, geology, and chemistry converge to offer insights into critical issues such as climate change, water quality, and soil health. She remarked on the necessity of collaboration, explaining that BIOGRIP’s platform, built on shared resources and expertise, exemplifies the power of uniting across institutional boundaries to accelerate impactful discoveries.

The programme featured insightful scientific talks by leading experts, each focusing on how biogeochemistry addresses key environmental issues such as sustainability and resource management. These presentations reinforced BIOGRIP’s commitment to advancing knowledge that can influence policy and improve practices.

Attendees were also given guided tours of the state-of-the-art laboratories in the Centre for Mineral Biogeochemistry, which provided a behind-the-scenes look at the advanced tools and methods employed in studying interactions between minerals, biology, and the environment. For many, this was a highlight, as they observed firsthand how biogeochemical research is conducted and contributes to soil health, pollution control, and environmental conservation.

The launch provided ample networking opportunities, fostering connections among academics, government representatives, industry professionals, and environmental organisations. Over a catered lunch, participants engaged in vibrant discussions about potential collaborations and the role of biogeochemistry in addressing South Africa’s environmental challenges.

The BIOGRIP national launch stands as a milestone event, not only for the UFS, but for the broader South African scientific community. With the establishment of this research platform, South Africa is well-positioned to tackle pressing environmental issues through innovative research and cross-sector collaboration. The event left attendees inspired and motivated, setting an optimistic tone for the future of biogeochemistry research in the region.

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept