Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2024 | Story Leonie Bolleurs | Photo Supplied
BOOTES-6 telescope station
The BOOTES-6 telescope station captured a South African sighting of the southern lights, a rare atmospheric phenomenon powered by solar activity.

The northern lights, with their vibrant displays of green, pink, and violet hues, have become a famous attraction in Nordic countries. But in early October, a rare sighting of the southern lights – or aurora australis – was reported in South Africa, surprising many.

Prof Pieter Meintjes, Professor in the Department of Physics at the University of the Free State (UFS), explains that both the northern and southern lights are the result of charged particles from coronal mass ejections (CMEs) on the sun, which are captured by Earth’s magnetic field. "The interaction between magnetic fields and charged particles, such as protons and electrons, is very interesting. The magnetic field forces these particles to spiral around the field lines, ultimately guiding them towards the magnetic poles. As these particles enter Earth’s atmosphere, they collide with atmospheric atoms, causing a beautiful glow. The colours of the aurora indicate which atoms are involved. Typically, hydrogen shines red, while oxygen and nitrogen produce a greenish-blue tinge," he says.

Observing the southern lights

When the display occurs above the northern magnetic pole, it is called the aurora borealis (northern lights) and can typically be observed over regions such as Alaska, Greenland, and the Nordic countries. Above the southern magnetic pole, it is known as aurora australis (southern lights), usually visible over places such as Antarctica and New Zealand. “In extreme cases – when gigantic mass ejections occurred – it can also be observed in mid-latitudes such as South Africa,” says Prof Meintjes.

This recent and rare South African sighting was also captured by the BOOTES-6 telescope station at Boyden Observatory, located just outside Bloemfontein. According to Prof Meintjes, the telescope station has an all-sky monitor – a camera constantly watching the sky for changes and monitoring, among others, cloud cover to ensure that the telescope is always safe from weather. While the monitor was taking photos of the night sky, Prof Alberto Castro-Tirado, a research professor at the Institute of Astrophysics of Andalusia in Spain, picked up the aurora.

The Institute of Astrophysics of Andalusia in Spain, in collaboration with the University College Dublin (UCD), is partnering with the UFS in a research-driven initiative involving the BOOTES-6 telescope station, installed in 2022 during the COVID-19 pandemic. Under a Memorandum of Understanding that was recently renewed for another five years, the UFS and UCD share approximately 30% of the telescope's observing time dedicated to UFS research.

“The DPRT telescope (Dolores Pérez-Ramírez telescope), named after a Spanish astronomer and lecturer at the University of Jaén, contributes significantly to our research, with publications resulting from contributions made by the telescope station and collaborators on gamma-ray bursts, occultations, and transient events co-authored by me and a colleague in the department, Dr Hendrik van Heerden,” notes Prof Meintjes.

Research-driven initiatives

Data from the telescope station is also used for their in-house projects and contributes significantly to the work of their PhD students that will be submitted in the next few years. This includes the PhD work of Helene Szegedi, who uses data from the BOOTES-6 telescope station to study cataclysmic variable systems – compact binaries that erupt regularly. Another PhD student, Joleen Barnard, studies blazar variability under the guidance of Prof Brian van Soelen. Blazars, explains Prof Meintjes, are the core of distant galaxies powered by supermassive black holes. These cosmic jets are pointed towards Earth, but fortunately, they are millions or billions of light years away; otherwise, their impact would be devastating to life on Earth.

News Archive

Because you can do the undoable
2014-05-30


Gabriela Schroder

Since visiting the University of Vermont in 2011 as an F1 student and attending the Stanford Sophomore College the year after, Gabriela Schroder has never stopped dreaming and working towards her objectives.

During the autumn graduation earlier in 2014, Gabriela received the Dean’s Medal. This award goes to the final-year student who achieves the best results in respect of a first Bachelor’s degree in the Faculty of Natural and Agricultural Sciences. Her triumph did not end there. In addition, she also received the Senate’s Medal and Prize which is awarded to the best Bachelor’s degree student at the university. Across all the faculties of our university. 

“Although these medals came to me as a surprise, it really was a reward to my hard work and toil throughout my undergraduate years,” she said. Schroder was also honoured and introduced by Prof Jonathan Jansen on stage at this year’s Kovsie Open Day, along with other top achieving students. She believes that anybody can reach their goals if they are willing to make sacrifices and through focus, hard work and determination. 

One of her favourite quotes that motives her is of Albert Einstein, “You really understand something if you can explain it to your grandmother.” In the process of learning, one must break down what they are working towards. She advises to make the knowledge your own – this develops a better insight into the concept. In the end, that which is regarded as complex is originally built from simple principles.

Schroder is currently studying towards her BSc Honours in Biochemistry at Kovsies. She has her sights set on a master’s degree in the near future.

“To my fellow Kovsies and beyond: seize your opportunities. Don’t be afraid to think the unthinkable – because you can do the undoable,” she added.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept