Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2024 | Story Leonie Bolleurs | Photo Supplied
BOOTES-6 telescope station
The BOOTES-6 telescope station captured a South African sighting of the southern lights, a rare atmospheric phenomenon powered by solar activity.

The northern lights, with their vibrant displays of green, pink, and violet hues, have become a famous attraction in Nordic countries. But in early October, a rare sighting of the southern lights – or aurora australis – was reported in South Africa, surprising many.

Prof Pieter Meintjes, Professor in the Department of Physics at the University of the Free State (UFS), explains that both the northern and southern lights are the result of charged particles from coronal mass ejections (CMEs) on the sun, which are captured by Earth’s magnetic field. "The interaction between magnetic fields and charged particles, such as protons and electrons, is very interesting. The magnetic field forces these particles to spiral around the field lines, ultimately guiding them towards the magnetic poles. As these particles enter Earth’s atmosphere, they collide with atmospheric atoms, causing a beautiful glow. The colours of the aurora indicate which atoms are involved. Typically, hydrogen shines red, while oxygen and nitrogen produce a greenish-blue tinge," he says.

Observing the southern lights

When the display occurs above the northern magnetic pole, it is called the aurora borealis (northern lights) and can typically be observed over regions such as Alaska, Greenland, and the Nordic countries. Above the southern magnetic pole, it is known as aurora australis (southern lights), usually visible over places such as Antarctica and New Zealand. “In extreme cases – when gigantic mass ejections occurred – it can also be observed in mid-latitudes such as South Africa,” says Prof Meintjes.

This recent and rare South African sighting was also captured by the BOOTES-6 telescope station at Boyden Observatory, located just outside Bloemfontein. According to Prof Meintjes, the telescope station has an all-sky monitor – a camera constantly watching the sky for changes and monitoring, among others, cloud cover to ensure that the telescope is always safe from weather. While the monitor was taking photos of the night sky, Prof Alberto Castro-Tirado, a research professor at the Institute of Astrophysics of Andalusia in Spain, picked up the aurora.

The Institute of Astrophysics of Andalusia in Spain, in collaboration with the University College Dublin (UCD), is partnering with the UFS in a research-driven initiative involving the BOOTES-6 telescope station, installed in 2022 during the COVID-19 pandemic. Under a Memorandum of Understanding that was recently renewed for another five years, the UFS and UCD share approximately 30% of the telescope's observing time dedicated to UFS research.

“The DPRT telescope (Dolores Pérez-Ramírez telescope), named after a Spanish astronomer and lecturer at the University of Jaén, contributes significantly to our research, with publications resulting from contributions made by the telescope station and collaborators on gamma-ray bursts, occultations, and transient events co-authored by me and a colleague in the department, Dr Hendrik van Heerden,” notes Prof Meintjes.

Research-driven initiatives

Data from the telescope station is also used for their in-house projects and contributes significantly to the work of their PhD students that will be submitted in the next few years. This includes the PhD work of Helene Szegedi, who uses data from the BOOTES-6 telescope station to study cataclysmic variable systems – compact binaries that erupt regularly. Another PhD student, Joleen Barnard, studies blazar variability under the guidance of Prof Brian van Soelen. Blazars, explains Prof Meintjes, are the core of distant galaxies powered by supermassive black holes. These cosmic jets are pointed towards Earth, but fortunately, they are millions or billions of light years away; otherwise, their impact would be devastating to life on Earth.

News Archive

Plant-strengthening agent enhances natural ability of plants to survive
2015-07-27

Drought, diseases, and fungi. These are factors that farmers have no control over, and they often have to watch despondently as their crops are damaged. In addition, the practice of breeding plants in special and strictly-controlled conditions, has resulted in crops losing the chemical ability to protect themselves in nature.

Researchers in the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS) have developed an organic agent that restores this chemical imbalance in plants. It enables the plant to build its own resistance against mild stress factors, and thus ensures increased growth and yield by the plant.

ComCat®, a plant-strengthening agent, is the result of extensive research by the German company, Agraforum AG, together with the UFS. Commercialisation was initially limited to Europe, while research was done at the UFS.

“Plants have become weak because they were grown specially and in isolation. They can’t protect themselves any longer,” says Dr Elmarie van der Watt from the department.

Dr Van der Watt says that, in nature, plants communicate by means of natural chemicals as part of their resistance mechanisms towards various stress conditions. These chemicals enable them to protect themselves against stress conditions, such as diseases and fungi (biotic conditions) or wind and droughts (abiotic conditions).

Most wild plant varieties are usually well-adapted to resist these stress factors. However, monoculture crops have lost this ability to a large extent.

The European researchers extracted these self-protection chemicals from wild plants, and made them available to the UFS for research and development.

“This important survival mechanism became dormant in monoculture crops. ComCat® wakes the plant up and says ‘Hey, you should start protecting yourself’.”

Research over the last few years has shown that the agent, applied mostly as a foliar spray, subsequently leads to better seedlings, as well as to growth, and yields enhancement of various crops. This is good news for the agricultural sector as it does not induce unwanted early vegetative growth that could jeopardise the final yield ? as happened in the past for nitrogen application at an early growth stage.

“The use of synthetic agents, such as fungicides which contain copper, are now banned. Nowadays, options for natural and organic agriculture is being investigated. This product is already widely used in Europe, but because farmers are often swamped by quacks, the South African market is still somewhat sceptical.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept