Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2024 | Story Leonie Bolleurs | Photo Supplied
BOOTES-6 telescope station
The BOOTES-6 telescope station captured a South African sighting of the southern lights, a rare atmospheric phenomenon powered by solar activity.

The northern lights, with their vibrant displays of green, pink, and violet hues, have become a famous attraction in Nordic countries. But in early October, a rare sighting of the southern lights – or aurora australis – was reported in South Africa, surprising many.

Prof Pieter Meintjes, Professor in the Department of Physics at the University of the Free State (UFS), explains that both the northern and southern lights are the result of charged particles from coronal mass ejections (CMEs) on the sun, which are captured by Earth’s magnetic field. "The interaction between magnetic fields and charged particles, such as protons and electrons, is very interesting. The magnetic field forces these particles to spiral around the field lines, ultimately guiding them towards the magnetic poles. As these particles enter Earth’s atmosphere, they collide with atmospheric atoms, causing a beautiful glow. The colours of the aurora indicate which atoms are involved. Typically, hydrogen shines red, while oxygen and nitrogen produce a greenish-blue tinge," he says.

Observing the southern lights

When the display occurs above the northern magnetic pole, it is called the aurora borealis (northern lights) and can typically be observed over regions such as Alaska, Greenland, and the Nordic countries. Above the southern magnetic pole, it is known as aurora australis (southern lights), usually visible over places such as Antarctica and New Zealand. “In extreme cases – when gigantic mass ejections occurred – it can also be observed in mid-latitudes such as South Africa,” says Prof Meintjes.

This recent and rare South African sighting was also captured by the BOOTES-6 telescope station at Boyden Observatory, located just outside Bloemfontein. According to Prof Meintjes, the telescope station has an all-sky monitor – a camera constantly watching the sky for changes and monitoring, among others, cloud cover to ensure that the telescope is always safe from weather. While the monitor was taking photos of the night sky, Prof Alberto Castro-Tirado, a research professor at the Institute of Astrophysics of Andalusia in Spain, picked up the aurora.

The Institute of Astrophysics of Andalusia in Spain, in collaboration with the University College Dublin (UCD), is partnering with the UFS in a research-driven initiative involving the BOOTES-6 telescope station, installed in 2022 during the COVID-19 pandemic. Under a Memorandum of Understanding that was recently renewed for another five years, the UFS and UCD share approximately 30% of the telescope's observing time dedicated to UFS research.

“The DPRT telescope (Dolores Pérez-Ramírez telescope), named after a Spanish astronomer and lecturer at the University of Jaén, contributes significantly to our research, with publications resulting from contributions made by the telescope station and collaborators on gamma-ray bursts, occultations, and transient events co-authored by me and a colleague in the department, Dr Hendrik van Heerden,” notes Prof Meintjes.

Research-driven initiatives

Data from the telescope station is also used for their in-house projects and contributes significantly to the work of their PhD students that will be submitted in the next few years. This includes the PhD work of Helene Szegedi, who uses data from the BOOTES-6 telescope station to study cataclysmic variable systems – compact binaries that erupt regularly. Another PhD student, Joleen Barnard, studies blazar variability under the guidance of Prof Brian van Soelen. Blazars, explains Prof Meintjes, are the core of distant galaxies powered by supermassive black holes. These cosmic jets are pointed towards Earth, but fortunately, they are millions or billions of light years away; otherwise, their impact would be devastating to life on Earth.

News Archive

New modern dissection hall ensures optimal learning experience for medical students
2015-12-14

New Dissection Hall in the Francois Retief Building on the Bloemfontein Campus.
Photo: Stephen Collett

The School of Medicine in the Faculty of Health Sciences at the university opened its doors on 6 June 1969. Three years later, a dissection hall for anatomy training was added to the school. This year, because of the prospective growth in the number of medical students as well as in changing methods of teaching and training, a new modern Dissection Hall has been completed on the Bloemfontein Campus. This ensures that students receive an optimal learning experience during dissection tuition.

The Dissection Hall was built as a double-storey wing to the existing Francois Retief Building. Covering 733m², the new facility is on the first floor - the same level as the existing hall - to allow easy access between the two facilities. The ground floor, totalling 465m², houses various offices for 16 people.

The new hall has special lighting and modern equipment for the training of second-year medical students in dissection. The hall also has high-quality sound and computer equipment. A unique camera system allows students to follow dissection demonstrations on 10 screens in the hall. Dissection demonstrations are recorded, enabling lecturers to compile new visual aid material for teaching and learning.

The dissection programme for medical students is of critical importance, not only for acquiring anatomical knowledge, but also for developing critical skills in medical students.

The new hall is also used for clinical workshops and postgraduate teaching seminars, as well as workshops in orthopaedics (shoulder, hip, and knee), otorhinolaryngology, cardiothoracic surgery (valve and endoscopy), and anaesthesiology, among others.

Both present and future generations of medical students will benefit from this new world-class facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept