Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2024 | Story Leonie Bolleurs | Photo Supplied
BOOTES-6 telescope station
The BOOTES-6 telescope station captured a South African sighting of the southern lights, a rare atmospheric phenomenon powered by solar activity.

The northern lights, with their vibrant displays of green, pink, and violet hues, have become a famous attraction in Nordic countries. But in early October, a rare sighting of the southern lights – or aurora australis – was reported in South Africa, surprising many.

Prof Pieter Meintjes, Professor in the Department of Physics at the University of the Free State (UFS), explains that both the northern and southern lights are the result of charged particles from coronal mass ejections (CMEs) on the sun, which are captured by Earth’s magnetic field. "The interaction between magnetic fields and charged particles, such as protons and electrons, is very interesting. The magnetic field forces these particles to spiral around the field lines, ultimately guiding them towards the magnetic poles. As these particles enter Earth’s atmosphere, they collide with atmospheric atoms, causing a beautiful glow. The colours of the aurora indicate which atoms are involved. Typically, hydrogen shines red, while oxygen and nitrogen produce a greenish-blue tinge," he says.

Observing the southern lights

When the display occurs above the northern magnetic pole, it is called the aurora borealis (northern lights) and can typically be observed over regions such as Alaska, Greenland, and the Nordic countries. Above the southern magnetic pole, it is known as aurora australis (southern lights), usually visible over places such as Antarctica and New Zealand. “In extreme cases – when gigantic mass ejections occurred – it can also be observed in mid-latitudes such as South Africa,” says Prof Meintjes.

This recent and rare South African sighting was also captured by the BOOTES-6 telescope station at Boyden Observatory, located just outside Bloemfontein. According to Prof Meintjes, the telescope station has an all-sky monitor – a camera constantly watching the sky for changes and monitoring, among others, cloud cover to ensure that the telescope is always safe from weather. While the monitor was taking photos of the night sky, Prof Alberto Castro-Tirado, a research professor at the Institute of Astrophysics of Andalusia in Spain, picked up the aurora.

The Institute of Astrophysics of Andalusia in Spain, in collaboration with the University College Dublin (UCD), is partnering with the UFS in a research-driven initiative involving the BOOTES-6 telescope station, installed in 2022 during the COVID-19 pandemic. Under a Memorandum of Understanding that was recently renewed for another five years, the UFS and UCD share approximately 30% of the telescope's observing time dedicated to UFS research.

“The DPRT telescope (Dolores Pérez-Ramírez telescope), named after a Spanish astronomer and lecturer at the University of Jaén, contributes significantly to our research, with publications resulting from contributions made by the telescope station and collaborators on gamma-ray bursts, occultations, and transient events co-authored by me and a colleague in the department, Dr Hendrik van Heerden,” notes Prof Meintjes.

Research-driven initiatives

Data from the telescope station is also used for their in-house projects and contributes significantly to the work of their PhD students that will be submitted in the next few years. This includes the PhD work of Helene Szegedi, who uses data from the BOOTES-6 telescope station to study cataclysmic variable systems – compact binaries that erupt regularly. Another PhD student, Joleen Barnard, studies blazar variability under the guidance of Prof Brian van Soelen. Blazars, explains Prof Meintjes, are the core of distant galaxies powered by supermassive black holes. These cosmic jets are pointed towards Earth, but fortunately, they are millions or billions of light years away; otherwise, their impact would be devastating to life on Earth.

News Archive

Farmers need to plan grazing better, says UFS expert
2017-02-21

Description: Prof HO de Waal Tags: Prof HO de Waal

Prof HO de Waal, affiliated researcher
at the University of the Free State,
says farmers should save grazing
during the summer months to have
fodder available in the winter and
early spring.
Photo: Theuns Botha,
Landbouweekblad

“Farmers should save veld during the summer months to have grazing available for animals especially in the winter and early spring. Farmers should also adjust livestock numbers timely and wisely according to the available material in the field,” says Prof HO de Waal, professional animal scientist and affiliated researcher in the Department of Animal, Wildlife and Grassland Sciences at the University of the Free State.

He offered this advice as a result of the sporadic and scattered (scant) rainfall of the past couple of summers. “In retrospect we know that this kind of precipitation started in about 2014 and has continued in subsequent summers. In February 2015, it was clear that a major fodder scarcity was developing.”

Existing research methods serve as source of current knowledge
Dr Herman Fouché (Agricultural Research Council) has conducted research on the impact of climate, especially rainfall, on the growth of grass. Sophisticated computer technology developed as far back as the 1980s to – through modelling – predicts the impact of climate on field production during the growing season.

The impact of climate, and more specifically rainfall, on field production has been known to animal and grazing scientists for a long time. Prof De Waal used the modelling results to determine the impact of rainfall on grass as a feeding source for animals.

“Information that emerged from this old research programme could therefore be applied directly to animal production,” says Prof De Waal.

Adjust livestock numbers to availability of grazing
In the summer rainfall areas of South Africa, grass usually grows from the end of August and early September. The growth process is dependent on the transfer of soil moisture, as well as on rainfall during the winter and early spring.

“Livestock numbers should be balanced throughout the year (according to the nutritional needs and production of the animals) with the availability of grazing material – be consistent, not only during certain seasons or when drought is imminent,” is Prof De Waal’s advice to farmers. “Farmers are also encouraged to carefully reduce the number of livestock on grazing and to rather focus their attention and limited resources on the remaining breeding herds (cows and ewes).”

“It is tragic, but unfortunately many farmers will not survive the effects of recent years. Similar climatic conditions will occur, with the same tragic consequences for man and beast. Better planning has to start now.” The assistance of private institutions, individuals, as well as the government, during the severe droughts is gratefully acknowledged.

Spineless cactus pear as solution for scarcity of animal feed
Prof De Waal says spineless cactus pears could be used as a feeding source during droughts. “The effects of a severe drought, or major animal-feed scarcity, are still prevalent in large parts of the subcontinent.” This may act as a catalyst to utilise spineless cactus pears as a feeding source and to be incorporated in the feed-flow programme for livestock on natural grazing.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept