Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 November 2024 | Story André Damons | Photo Supplied
Dr Nomakhuwa Tabane
Dr Nomakhuwa Tabane is the Head of the Department of Paediatrics and Child Health at the University of the Free State.

The first 1 000 days of a baby’s life, from conception to the age of two, constitute a critical period during which children’s brains form as many as 1 000 neural connections every second – a pace that will not be repeated in their lifetime.

These connections are the building blocks of every child’s future, which makes the role of a campaign like the First 1 000 Days vitally important. It highlights the importance of stimulation and learning from the earliest possible moments, good nutrition for expectant mothers, prevention of malnutrition of children, and early diagnosis of chronic, life-threatening illnesses and developmental disorders.

This is according to Dr Nomakhuwa Tabane, Head of the Department of Paediatrics and Child Health at the University of the Free State (UFS). The campaign was promoted by Dr Tabane’s department in partnership with the Mother and Child Academic Hospital (MACAH) Foundation.  The annual campaign kicks off on 1 November each year.

“There are certain factors that can interfere with this process and result in irreversible damage to children’s brain development, poor growth, and compromised immunity. Those conditions include prematurity, ischaemic brain damage, and infections. These are also the top contributors to the neonatal mortality.

“In the one-month to 49-month-old period, the causes of mortality and morbidity that affect brain development and growth include respiratory illnesses like pneumonia, diarrhoeal diseases, and malnutrition,” says Dr Tabane. 

Aims of the campaign

The First 1 000 Days initiative promotes excellent mother, infant, and child healthcare by supporting community-based programmes that drive the message of the importance of the first 1 000 days of life to teenagers, young adults, healthcare workers, and the public. This initiative aims to bring about interventions that can address the Under-5 Mortality Rates (U5MR), including Neonatal Mortality Rates (NMR), Infant Mortality Rates (IMR), and Perinatal Mortality Rates (PMR).

“The campaign also aims to improve the growth and development of children in their first 1 000 days of life from conception until they are two years old. It also aims to improve expectant mothers’ health and prevent and decrease maternal mortality in the Free State, as well as to prevent unwanted pregnancies, focusing on decreasing teenage pregnancies.”

According to Dr Tabane, the 2020 South African UN Inter-agency Group for Child Mortality Estimation (UNIGME) estimate for U5MR was 32 deaths per 1 000 live births, NMR of 11 per 1 000 live births, and infant mortality rate (IMR) of 26 per 1 000 live births as compared to the Medical Research Council (MRC) estimate of U5MR of 28 per 1 000 live births, NMR of 12 per 1 000 live births and IMR of 21 per 1 000 live births (15).

South Africa behind other BRICS countries

Based on the 2020 UNIGME report, says Dr Tabane, South Africa has achieved the Sustainable Development Goals (SDG) goals of NMR and the U5MR. South Africa’s indicators were much better than the UNIGME and the MRC 2020 estimates, but it still falls behind other BRICS countries.

“In contrast to other BRICS countries (Brazil, Russia, India, China, and South Africa), UNIGME reports that in the same reporting period of 2020, China’s U5MR was seven per 1 000 live births, Brazil's 15 per 1 000 live births, and Russia's five per 1 000 live births (16). In 2020, the South African national in-hospital neonatal mortality rate (NMR) based on DHIS data was 12,0 per 1 000 live births; the infant mortality rate (IMR) was 15.1 per 1 000 live births, and the under-5 mortality (U5 MR) rate was 16.9 per 1 000 live births, with differences amongst provinces,” says Dr Tabane.

The first 1 000 days campaign’s interventions include education to prevent illnesses and deaths and promote good health, growth, and development. While many training programmes on child survival strategies have been rolled out (e.g., MSSN, HBB, ETAT, AANC, ESMOE, and IMCI), in-service training still has significant gaps.

Other interventions include preventing unwanted and unplanned pregnancies, providing healthcare support for therapeutic and interventional care, strengthening the implementation of the existing strategies developed by the Department of Health to reduce Maternal and Child Mortalities, and monitoring and evaluating the interventions.

News Archive

Nobel Prize-winner presents first lecture at Vice-Chancellor’s prestige lecture series
2017-11-17


 Description: Prof Levitt visit Tags: Prof Levitt visit

At the first lecture in the UFS Vice Chancellor’s Prestige Lecture series,
were from the left: Prof Jeanette Conradie, UFS Department of Chemistry;
Prof Michael Levitt, Nobel Prize-winner in Chemistry, biophysicist and
professor in structural biology at Stanford University; Prof Francis Petersen,
UFS Vice-Chancellor and Rector; and Prof Corli Witthuhn,
UFS Vice-Rector: Research. 
Photo: Johan Roux

South African born biophysicist and Nobel Prize-winner in Chemistry, Prof Michael Levitt, paid a visit to the University of the Free Sate (UFS) as part of the Academy of Science of South Africa’s (ASSAf) Distinguished Visiting Scholars’ Programme. 

Early this week the professor in structural biology at Stanford University in the US presented a captivating lecture on the Bloemfontein Campus on his lifetime’s work that earned him the Nobel Prize in 2013. His lecture launched the UFS Vice-Chancellor’s Prestige Lecture series, aimed at knowledge sharing within, and beyond our university boundaries. 

Prof Levitt was one of the first researchers to conduct molecular dynamics simulations of DNA and proteins and developed the first software for this purpose. He received the prize for Chemistry, together with Martin Karplus and Arieh Warshel, “for the development of multiscale models for complex chemical systems”.

Attending the lecture were members of UFS management, academic staff from a range of faculties and other universities as well as young researchers. “Multiscale modelling is very much based on something that makes common sense,” Prof Levitt explained. “And that is to makes things as simple as possible, but not simpler. Everything needs to have the right level of simplicity, that is not too simple, but not too complicated.”  

An incredible mind
Prof Levitt enrolled for applied mathematics at the University of Pretoria at the age of 15. He visited his uncle and aunt in London after his first-year exams, and decided to stay on because they had a television, he claims. A series on molecular biology broadcast on BBC, sparked an interest that would lead Prof Levitt via Israel, and Cambridge, to the Nobel Prize stage – all of which turned out to be vital building blocks for his research career. 

Technology to the rescue
The first small protein model that Prof Levitt built was the size of a room. But that exercise led to the birth of multiscale modelling of macromolecules. For the man on the street, that translates to computerised models used to simulate protein action, and reaction. With some adaptations, the effect of medication can be simulated on human protein in a virtual world. 

“I was lucky to stand on the shoulder of giants,” he says about his accomplishments, and urges the young to be good and kind. “Be passionate about what you do, be persistent, and be original,” he advised.  

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept