Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 November 2024 | Story André Damons | Photo Supplied
Dr Nomakhuwa Tabane
Dr Nomakhuwa Tabane is the Head of the Department of Paediatrics and Child Health at the University of the Free State.

The first 1 000 days of a baby’s life, from conception to the age of two, constitute a critical period during which children’s brains form as many as 1 000 neural connections every second – a pace that will not be repeated in their lifetime.

These connections are the building blocks of every child’s future, which makes the role of a campaign like the First 1 000 Days vitally important. It highlights the importance of stimulation and learning from the earliest possible moments, good nutrition for expectant mothers, prevention of malnutrition of children, and early diagnosis of chronic, life-threatening illnesses and developmental disorders.

This is according to Dr Nomakhuwa Tabane, Head of the Department of Paediatrics and Child Health at the University of the Free State (UFS). The campaign was promoted by Dr Tabane’s department in partnership with the Mother and Child Academic Hospital (MACAH) Foundation.  The annual campaign kicks off on 1 November each year.

“There are certain factors that can interfere with this process and result in irreversible damage to children’s brain development, poor growth, and compromised immunity. Those conditions include prematurity, ischaemic brain damage, and infections. These are also the top contributors to the neonatal mortality.

“In the one-month to 49-month-old period, the causes of mortality and morbidity that affect brain development and growth include respiratory illnesses like pneumonia, diarrhoeal diseases, and malnutrition,” says Dr Tabane. 

Aims of the campaign

The First 1 000 Days initiative promotes excellent mother, infant, and child healthcare by supporting community-based programmes that drive the message of the importance of the first 1 000 days of life to teenagers, young adults, healthcare workers, and the public. This initiative aims to bring about interventions that can address the Under-5 Mortality Rates (U5MR), including Neonatal Mortality Rates (NMR), Infant Mortality Rates (IMR), and Perinatal Mortality Rates (PMR).

“The campaign also aims to improve the growth and development of children in their first 1 000 days of life from conception until they are two years old. It also aims to improve expectant mothers’ health and prevent and decrease maternal mortality in the Free State, as well as to prevent unwanted pregnancies, focusing on decreasing teenage pregnancies.”

According to Dr Tabane, the 2020 South African UN Inter-agency Group for Child Mortality Estimation (UNIGME) estimate for U5MR was 32 deaths per 1 000 live births, NMR of 11 per 1 000 live births, and infant mortality rate (IMR) of 26 per 1 000 live births as compared to the Medical Research Council (MRC) estimate of U5MR of 28 per 1 000 live births, NMR of 12 per 1 000 live births and IMR of 21 per 1 000 live births (15).

South Africa behind other BRICS countries

Based on the 2020 UNIGME report, says Dr Tabane, South Africa has achieved the Sustainable Development Goals (SDG) goals of NMR and the U5MR. South Africa’s indicators were much better than the UNIGME and the MRC 2020 estimates, but it still falls behind other BRICS countries.

“In contrast to other BRICS countries (Brazil, Russia, India, China, and South Africa), UNIGME reports that in the same reporting period of 2020, China’s U5MR was seven per 1 000 live births, Brazil's 15 per 1 000 live births, and Russia's five per 1 000 live births (16). In 2020, the South African national in-hospital neonatal mortality rate (NMR) based on DHIS data was 12,0 per 1 000 live births; the infant mortality rate (IMR) was 15.1 per 1 000 live births, and the under-5 mortality (U5 MR) rate was 16.9 per 1 000 live births, with differences amongst provinces,” says Dr Tabane.

The first 1 000 days campaign’s interventions include education to prevent illnesses and deaths and promote good health, growth, and development. While many training programmes on child survival strategies have been rolled out (e.g., MSSN, HBB, ETAT, AANC, ESMOE, and IMCI), in-service training still has significant gaps.

Other interventions include preventing unwanted and unplanned pregnancies, providing healthcare support for therapeutic and interventional care, strengthening the implementation of the existing strategies developed by the Department of Health to reduce Maternal and Child Mortalities, and monitoring and evaluating the interventions.

News Archive

Stem cell research and human cloning: legal and ethical focal points
2004-07-29

   

(Summary of the inaugural lecture of Prof Hennie Oosthuizen, from the Department of Criminal and Medical Law at the Faculty of Law of the University of the Free State.)

 

In the light of stem cell research, research on embryo’s and human cloning it will be fatal for legal advisors and researchers in South Africa to ignore the benefits that new bio-medical development, through research, contain for this country.

Legal advisors across the world have various views on stem cell research and human cloning. In the USA there is no legislation that regulates stem cell research but a number of States adopted legislation that approves stem cell research. The British Parlement gave permission for research on embryonic stem cells, but determined that it must be monitored closely and the European Union is of the opinion that it will open a door for race purification and commercial exploitation of human beings.

In South Africa the Bill on National Health makes provision for therapeutical and non therapeutical research. It also makes provision for therapeutical embryonical stem cell research on fetuses, which is not older than 14 days, as well as for therapeutical cloning under certain circumstances subject to the approval of the Minister. The Bill prohibits reproductive cloning.

Research on human embrio’s is a very controversial issue, here and in the rest of the world.

Researchers believe that the use of stem cell therapy could help to side-step the rejection of newly transplanted organs and tissue and if a bank for stem cell could be built, the shortage of organs for transplants would become something of the past. Stem cells could also be used for healing of Alzheimer’s, Parkinson’s and spinal injuries.

Sources from which stem cells are obtained could also lead to further ethical issues. Stem cells are harvested from mature human cells and embryonic stem cells. Another source to be utilised is to take egg cells from the ovaries of aborted fetuses. This will be morally unacceptable for those against abortions. Linking a financial incentive to that could become more of a controversial issue because the woman’s decision to abort could be influenced. The ideal would be to rather use human fetus tissue from spontaneous abortions or extra-uterine pregnancies than induced abortions.

The potential to obtain stem cells from the blood of the umbilical cord, bone-marrow and fetus tissue and for these cells to arrange themselves is known for quite some time. Blood from the umbilical cord contains many stem cells, which is the origin of the body’s immune and blood system. It is beneficial to bank the blood of a newborn baby’s umbilical cord. Through stem cell transplants the baby or another family member’s life could be saved from future illnesses such as anemia, leukemia and metabolic storing disabilities as well as certain generic immuno disabilities.

The possibility to withdraw stem cells from human embrio’s and to grow them is more useable because it has more treatment possibilities.

With the birth of Dolly the sheep, communities strongly expressed their concern about the possibility that a new cloning technique such as the replacement of the core of a cell will be used in human reproduction. Embryonic splitting and core replacement are two well known techniques that are associated with the cloning process.

I differentiate between reproductive cloning – to create a cloned human embryo with the aim to bring about a pregnancy of a child that is identical to another individual – and therapeutically cloning – to create a cloned human embryo for research purposes and for healing human illnesses.

Worldwide people are debating whether to proceed with therapeutical cloning. There are people for and against it. The biggest ethical objection against therapeutical cloning is the termination of the development of a potential human being.

Children born from cloning will differ from each other. Factors such as the uterus environment and the environment in which the child is growing up will play a role. Cloning create unique children that will grow up to be unique individuals, just like me and you that will develop into a person, just like you and me. If we understand this scientific fact, most arguments against human cloning will disappear.

Infertility can be treated through in vitro conception. This process does not work for everyone. For some cloning is a revolutionary treatment method because it is the only method that does not require patients to produce sperm and egg cells. The same arguments that were used against in vitro conception in the past are now being used against cloning. It is years later and in vitro cloning is generally applied and accepted by society. I am of the opinion that the same will happen with regard to human cloning.

There is an argument that cloning must be prohibited because it is unsafe. Distorted ideas in this regard were proven wrong. Are these distorted ideas justified to question the safety of cloning and the cloning process you may ask. The answer, according to me, is a definite no. Human cloning does have many advantages. That includes assistance with infertility, prevention of Down Syndrome and recovery from leukemia.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept