Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 November 2024 | Story Pat Lamusse | Photo Supplied
Space and satellites 2024
During the visit to the Naval Hill Planetarium, were from the left, Dr Mart-Mari Duvenhage and Prof Matie Hoffman from the UFS Department of Physics, Consul General Stephanie Bunce and Vanessa Toscano from the US Consulate, and Dinah Mangope from the Department of Physics.

A delegation from the United States (US) Consulate General in Johannesburg, including Consul General Stephanie Bunce and Public Affairs Officer, Vanessa Toscano, visited the Bloemfontein Campus of the University of the Free State (UFS). Consul General Bunce met with the acting Vice-Chancellor and Principal of the UFS, Prof Anthea Rhoda, and the Dean of the Faculty of Natural and Agricultural Sciences, Prof Paul Oberholster. The US delegation also visited the Naval Hill Planetarium.

The UFS recently received a grant from the US Embassy to fund a project to promote science education by highlighting the role of satellites in our lives. Colleagues from the Department of Physics had the opportunity to demonstrate first-hand how the planetarium technology will be used to implement the project, which poses the question – what if something happens in space that interferes with the thousands of satellites we use for communication, weather prediction, navigation, banking … surveillance?

Thanks to this grant, the UFS will explore these questions and contribute to space situational awareness (SSA) and space domain awareness (SDA). SSA involves knowledge about the orbits of spacecraft and space debris. SDA refers to the knowledge and understanding of all activities occurring within the space domain.

There are currently at least 10 000 active satellites in Earth orbit, most of which are in low Earth orbit (LEO). However, in addition to satellites, there are well over 45 000 objects larger than 10 cm in orbit, including more than 35 000 pieces of space debris, such as dead satellites, rocket bodies, and pieces from breakups and collisions. Since 1991, there have been at least six unintentional collisions between active satellites and space debris.

Space turned out to be not as big as once thought, especially not in low Earth orbit (LEO – altitude less than 2 000 km). To make things worse, there are plans to launch up to 100 000 new satellites into LEO over the next decade.

Prof Matie Hoffman from the UFS Department of Physics notes, “We live in an era when the space economy is growing fast and the number of objects in Earth orbit, including satellites and space debris, is increasing rapidly. This poses risks to operational satellites. Recent publicity around Elon Musk’s Starlink satellites has generated additional interest around this topic. It is important to raise awareness of the challenges, which will allow scientists to mitigate them.”

The project will involve expertise in optical satellite observations from the University of Michigan through Prof Patrick Seitzer, international patron of the Friends of Boyden Observatory, and the American Museum of Natural History (AMNH). The grant will fund planetarium upgrades that will enable education on space and satellites, as well as optical satellite observations from Boyden Observatory. Beneficiaries will include learners, higher education institutions (both locally and in the US), and the public. South African project partners will be the South African National Space Agency (SANSA), the Future African Space Explorers’ STEM Academy (FASESA), and satellite-related companies in South Africa.

The Boyden Observatory is ideally situated to provide valuable optical satellite observations in an area of the sky that is not accessible from existing satellite observing facilities, especially for objects in LEO. In fact, the first observation of space debris in geosynchronous orbit was from Boyden Observatory in 1967.

The project will be rolled out from the end of 2024, harnessing facilities at both Boyden Observatory and the Naval Hill Planetarium.

News Archive

Using sugar to make the world a sweeter place
2017-10-13

Description: Deepback sugar Tags: Sugarcane, Dr Deepack Santchurn, Mauritius Sugar Industry Research Institute (MSIRI), Department of Plant Sciences 

Dr Deepack Santchurn, former PhD student in the
Department of Plant Sciences at the UFS,
and plant breeder in the  Mauritius Sugar Industry
Research Institute, with Prof Maryke Labuschagne, left,
Dr Santchurn’s study leader.
Photo: Charl Devenish



Besides it mainly being used for sugar production, sugarcane has emerged as an important alternative for providing clean renewable energy. Dr Deepack Santchurn, who works in the sugarcane breeding department of the Mauritius Sugar Industry Research Institute (MSIRI), believes if he could contribute towards a more environment-friendly and renewable energy through the use of sugarcane biomass, he would consider himself having made a great leap towards a better world. 

Sugarcane is mostly known and exploited for the sugar in its cane stem. According to Dr Santchurn it is not the only thing the crop does well. “Together with certain grasses, it is the finest living collector of sunlight energy and a producer of biomass in unit time. Sugarcane is now recognised worldwide as a potential renewable and environment-friendly bioenergy crop.” 

Significantly more bioenergy can be produced from sugarcane if the production system is not focused on the production and recovery of sucrose alone but on the maximum use to the total above-ground biomass. Diversification within the sugarcane industry is of paramount importance. 

He has been able to identify a few high biomass varieties that can be exploited industrially. One of the varieties is a commercial type with relatively high sugar and low fibre in the cane stem. Dr Santchurn explains: “Its sucrose content is about 0.5% less than the most cultivated commercial variety in Mauritius. Nevertheless, its sugar yield and above-ground biomass yield surpass those of the commercial varieties by more than 24%. The genetic gains compared to commercial varieties were around +50% for total biomass yield and +100% for fibre yield. Its cultivation is strictly related to bio-energy production and the extracted juice can be used as a feed-stock for ethanol and other high-value products.”

Dr Santchurn received his PhD at the UFS’s Department of Plant Sciences during the Winter Graduation Ceremonies in June this year. His study leader was Prof Maryke Labuschagne from the Department of Plant Sciences. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept