Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 November 2024 | Story Leonie Bolleurs | Photo Tania Allen
Business School Partnership 2024
Prof Per Assmo from University West, Sweden and Prof Anthea Rhoda from the UFS signed a Memorandum of Understanding that will develop academic cooperation across fields such as research, student and academic exchanges, and collaborative projects.

The University of the Free State (UFS) has signed a Memorandum of Understanding (MOU) with University West, Sweden. Held at the UFS Business School on the Bloemfontein Campus, the event saw the signing of the agreement by Prof Anthea Rhoda, acting UFS Vice-Chancellor and Principal, and Prof Per Assmo, Deputy Vice-Chancellor for Internationalisation at University West. The partnership aims to develop academic cooperation across fields such as research, student and academic exchanges, and collaborative projects.

This MOU opens the door to a wide range of collaborative initiatives, including academic and researcher exchanges for the purposes of teaching, conducting lectures, conducting research, and exchanging expertise. Additionally, the MOU includes student exchange programmes, joint research projects, and the shared hosting of seminars and conferences.

Prof Rhoda shared her enthusiasm to incorporate work-integrated learning (WIL) more widely at the UFS. “We are looking at work-integrated learning as an extension of engaged scholarship. It is something that we're looking forward to expanding,” she said.

Building a connected community

Prof Assmo explained that their institution, though small, has a unique approach that focuses on both production technology and work-integrated learning – a teaching model that goes beyond internships to provide students with practical, hands-on experience. "For us, WIL is a research field and academic discipline in its own right," he said.

University West is also the only university in the world to offer a PhD specifically in WIL, a programme it spent 20 years developing.

“We want to collaborate with South Africa as a strategic partner,” he said. The University West is already actively working with several South African universities, including the UFS, the Central University of Technology, the University of the Western Cape, and Tshwane University of Technology. “This would be the core for us, where we collaborate and find different forms within research and education, not restricted to any faculty or field as such.”

His vision also includes forming a larger ‘Nordic hub’ of connections across Sweden, Norway, and the European Union, along with a ‘regional hub’ in Bloemfontein. This way, universities can share ideas and resources to build a stronger, more connected community for the future.

A need for work-integrated learning

A working example of this partnership between University West and the UFS is the collaborative focus on integrated learning between Prof Liezel Massyn, Associate Professor in the UFS Business School, and Prof Kristina Areskoug Josefsson, Professor in Work-integrated Learning and Health Science from University West. They have a mutual commitment to improve educational practices through international partnerships and to advance integrated learning strategies. Together, they have already co-authored a research article and presented their findings at five conferences this year.

Prof Massyn said she realised that there is a need for work-integrated learning, specifically in the UFS Business School. “Initially, I thought our students were working, so they didn't need the work-integrated learning component. I then realised it could actually add a lot more value.”

Prof Nicolene Barkhuizen, Director of the UFS Business School, highlighted how this venture aligns with the university’s Vision 130, which aims to expand the UFS’ global footprint. “This partnership is an optimisation of the collaboration to contribute to Vision 130, expanding our reach globally while bringing practical value locally. We are looking forward to a very fruitful collaboration,” she said.

Speaking on behalf of the Faculty of Economic and Management Sciences, acting Dean Prof Frans Prinsloo discussed the potential for future projects. “Now that we have this collaboration agreement, there are many opportunities we can explore further,” he stated.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept