Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2024 | Story Jacky Tshokwe | Photo Supplied
BUAN Delegates
Botswana University of Agriculture and Natural Resources (BUAN) delegates that recently visited the University of the Free State to solidify a collaboration.

During an inspiring journey, a delegation from the University of the Free State (UFS) recently visited the Botswana University of Agriculture and Natural Resources (BUAN) with an ambitious goal: to solidify a collaboration that was sparked during the visit of BUAN’s Vice-Chancellor to the UFS and subsequent discussions in Namibia. The atmosphere was one of shared purpose and excitement as the UFS representatives, led by the Dean of the Faculty of Natural and Agricultural Sciences, the Vice-Dean: Agriculture, and the Vice-Dean: Postgraduate and Research, embarked on this significant academic endeavour.

This visit was not just a formal gesture, it was a step towards tangible, mutual benefits for students and staff of both institutions. The discussions between the UFS and the BUAN leadership, which centred around possibilities for student and staff exchanges and shared access to specialised equipment, pointed to the potential of creating a dynamic bridge between South African and Botswana academia. This partnership envisions collaborative supervision of postgraduate students, creating opportunities for intellectual growth that transcends borders. The two universities also explored joint funding applications and research avenues, with particular interest in BUAN’s innovative Meat Institute and AgroVolts solar panel project. Seeing the BUAN’s progress in renewable energy left the UFS team particularly impressed, reflecting the possibilities for sustainable development and resource-sharing that a partnership could yield.

During the discussions, the UFS delegation had a pivotal meeting with the BUAN’s Acting Deputy Vice-Chancellor: Academic and Research, Prof Samodimo Ngwako, who had previously visited the UFS. His familiarity with the UFS’ resources and vision made him an invaluable advocate for bridging the two institutions, highlighting how their strengths could complement each other. Prof Ngwako’s insights helped BUAN staff visualise the meaningful exchange of expertise and resources that could benefit both student bodies and contribute to third-stream income generation.

With the way forward clear, both the UFS and BUAN teams agreed on ‘quick steps’ to launch the collaboration – the swift signing of a Memorandum of Understanding (MoU), followed by the first exchange of students and staff, and the launch of co-supervised research projects. While specific timelines and milestones are to be confirmed post-MoU, both teams are keen on joint funding applications, especially in areas relevant to agricultural and natural resources both within Africa and beyond. This partnership, once formalised, is expected to solidify both universities as leading research hubs in agriculture and natural resources, advancing each institution’s standing on the continent.

Reflecting on the visit, the UFS delegation felt a deep sense of optimism. The collaboration between the UFS and the BUAN aligns seamlessly with the UFS’ broader vision for strengthening ties with African universities, showcasing a forward-thinking approach to partnerships. As the journey towards meaningful collaboration progresses, the shared enthusiasm witnessed at the BUAN serves as a hopeful reminder that academia – when united by common goals – can drive impactful change for students, faculty, and communities on both sides of the border.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept