Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2024 | Story Jacky Tshokwe | Photo Supplied
BUAN Delegates
Botswana University of Agriculture and Natural Resources (BUAN) delegates that recently visited the University of the Free State to solidify a collaboration.

During an inspiring journey, a delegation from the University of the Free State (UFS) recently visited the Botswana University of Agriculture and Natural Resources (BUAN) with an ambitious goal: to solidify a collaboration that was sparked during the visit of BUAN’s Vice-Chancellor to the UFS and subsequent discussions in Namibia. The atmosphere was one of shared purpose and excitement as the UFS representatives, led by the Dean of the Faculty of Natural and Agricultural Sciences, the Vice-Dean: Agriculture, and the Vice-Dean: Postgraduate and Research, embarked on this significant academic endeavour.

This visit was not just a formal gesture, it was a step towards tangible, mutual benefits for students and staff of both institutions. The discussions between the UFS and the BUAN leadership, which centred around possibilities for student and staff exchanges and shared access to specialised equipment, pointed to the potential of creating a dynamic bridge between South African and Botswana academia. This partnership envisions collaborative supervision of postgraduate students, creating opportunities for intellectual growth that transcends borders. The two universities also explored joint funding applications and research avenues, with particular interest in BUAN’s innovative Meat Institute and AgroVolts solar panel project. Seeing the BUAN’s progress in renewable energy left the UFS team particularly impressed, reflecting the possibilities for sustainable development and resource-sharing that a partnership could yield.

During the discussions, the UFS delegation had a pivotal meeting with the BUAN’s Acting Deputy Vice-Chancellor: Academic and Research, Prof Samodimo Ngwako, who had previously visited the UFS. His familiarity with the UFS’ resources and vision made him an invaluable advocate for bridging the two institutions, highlighting how their strengths could complement each other. Prof Ngwako’s insights helped BUAN staff visualise the meaningful exchange of expertise and resources that could benefit both student bodies and contribute to third-stream income generation.

With the way forward clear, both the UFS and BUAN teams agreed on ‘quick steps’ to launch the collaboration – the swift signing of a Memorandum of Understanding (MoU), followed by the first exchange of students and staff, and the launch of co-supervised research projects. While specific timelines and milestones are to be confirmed post-MoU, both teams are keen on joint funding applications, especially in areas relevant to agricultural and natural resources both within Africa and beyond. This partnership, once formalised, is expected to solidify both universities as leading research hubs in agriculture and natural resources, advancing each institution’s standing on the continent.

Reflecting on the visit, the UFS delegation felt a deep sense of optimism. The collaboration between the UFS and the BUAN aligns seamlessly with the UFS’ broader vision for strengthening ties with African universities, showcasing a forward-thinking approach to partnerships. As the journey towards meaningful collaboration progresses, the shared enthusiasm witnessed at the BUAN serves as a hopeful reminder that academia – when united by common goals – can drive impactful change for students, faculty, and communities on both sides of the border.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept