Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 November 2024 | Story Leonie Bolleurs | Photo Stephen Collett
SARIMA - 2024
The Directorate Research Development at the university proudly participates in the SARIMA Visibility Project, aimed at enhancing its global visibility and research excellence.

The University of the Free State (UFS) has been selected to participate in a high-impact initiative managed and coordinated by the Southern African Research and Innovation Management Association (SARIMA). The SARIMA Visibility Project, which focuses on elevating institutional prominence, aims to enhance the university’s global visibility and strengthen its capacity to secure international grants. By participating in this initiative, the UFS is positioning the Directorate for Research and Development (DRD) to benchmark against other leading Tier 1 institutions, adopting best practices in research management and innovation to fuel future growth.

Key outcomes already underway

Since joining the initiative, the university has implemented several key interventions. Most notably, the development and execution of standardised operating procedures have been introduced. These procedures ensure alignment with global standards, creating consistency across various functions within DRD. Such efforts not only improve operational efficiency, but also boost the university’s competitiveness in attracting international research collaborations and securing funding opportunities. Other platforms to promote visibility that the DRD has adopted this year include its newsletter, Research Nexus, webinars, and a presence on social media.

The SARIMA Visibility Project at the UFS is spearheaded by the DRD under the leadership of Dr Glen Taylor. As pioneers of the initiative, the DRD team is working closely with SARIMA to ensure the successful implementation of key strategies aimed at improving the research infrastructure and elevating the university’s global standing. Their leadership has been instrumental in driving efforts to meet the project's ambitious objectives. These objectives include promoting best practices in research and innovation management across the region. They aim to support the research and innovation ecosystem to drive regional social and economic development. Additionally, the project seeks to engage key stakeholders to strengthen collaboration. Another objective is to building capacity among research and innovation management practitioners through training and development initiatives.

The SARIMA project is closely aligned with the UFS’s Vision 130, a strategic roadmap designed to propel the institution into its 130th anniversary in 2034. Vision 130 seeks to elevate the university’s academic and research standing on the global stage. By enhancing international partnerships and refining research management practices, SARIMA is playing an important role in supporting the university in its goal of becoming a globally recognised research institution, in line with Vision 130.

Value added to the research environment

In the few months since its launch, the SARIMA initiative has already added significant value to the UFS Research Office. The introduction of standardised procedures has not only improved consistency across departments, but has also made the office more agile and responsive to the demands of international collaborations. Benchmarking exercises conducted as part of the project have allowed the university to identify key areas for improvement, adopting innovative solutions that further enhance the institution’s research capacity and global visibility.

The SARIMA Visibility Project marks a significant step forward for the university. It is not only a means of raising the institution’s profile, but also a platform for long-term sustainable research excellence. As the UFS continues to benefit from this initiative, it is setting the stage for a future of global recognition and academic achievement that will benefit both the institution and the broader academic community for years to come.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept