Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 November 2024 | Story Leonie Bolleurs | Photo Stephen Collett
SARIMA - 2024
The Directorate Research Development at the university proudly participates in the SARIMA Visibility Project, aimed at enhancing its global visibility and research excellence.

The University of the Free State (UFS) has been selected to participate in a high-impact initiative managed and coordinated by the Southern African Research and Innovation Management Association (SARIMA). The SARIMA Visibility Project, which focuses on elevating institutional prominence, aims to enhance the university’s global visibility and strengthen its capacity to secure international grants. By participating in this initiative, the UFS is positioning the Directorate for Research and Development (DRD) to benchmark against other leading Tier 1 institutions, adopting best practices in research management and innovation to fuel future growth.

Key outcomes already underway

Since joining the initiative, the university has implemented several key interventions. Most notably, the development and execution of standardised operating procedures have been introduced. These procedures ensure alignment with global standards, creating consistency across various functions within DRD. Such efforts not only improve operational efficiency, but also boost the university’s competitiveness in attracting international research collaborations and securing funding opportunities. Other platforms to promote visibility that the DRD has adopted this year include its newsletter, Research Nexus, webinars, and a presence on social media.

The SARIMA Visibility Project at the UFS is spearheaded by the DRD under the leadership of Dr Glen Taylor. As pioneers of the initiative, the DRD team is working closely with SARIMA to ensure the successful implementation of key strategies aimed at improving the research infrastructure and elevating the university’s global standing. Their leadership has been instrumental in driving efforts to meet the project's ambitious objectives. These objectives include promoting best practices in research and innovation management across the region. They aim to support the research and innovation ecosystem to drive regional social and economic development. Additionally, the project seeks to engage key stakeholders to strengthen collaboration. Another objective is to building capacity among research and innovation management practitioners through training and development initiatives.

The SARIMA project is closely aligned with the UFS’s Vision 130, a strategic roadmap designed to propel the institution into its 130th anniversary in 2034. Vision 130 seeks to elevate the university’s academic and research standing on the global stage. By enhancing international partnerships and refining research management practices, SARIMA is playing an important role in supporting the university in its goal of becoming a globally recognised research institution, in line with Vision 130.

Value added to the research environment

In the few months since its launch, the SARIMA initiative has already added significant value to the UFS Research Office. The introduction of standardised procedures has not only improved consistency across departments, but has also made the office more agile and responsive to the demands of international collaborations. Benchmarking exercises conducted as part of the project have allowed the university to identify key areas for improvement, adopting innovative solutions that further enhance the institution’s research capacity and global visibility.

The SARIMA Visibility Project marks a significant step forward for the university. It is not only a means of raising the institution’s profile, but also a platform for long-term sustainable research excellence. As the UFS continues to benefit from this initiative, it is setting the stage for a future of global recognition and academic achievement that will benefit both the institution and the broader academic community for years to come.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept