Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 November 2024 | Story André Damons | Photo Supplied
Implementation Science Workshop 2024
Building capacity for the use of implementation science. The Principal Investigators of the project; Dr Phindile Shangase from UFS, left, and Dr Lebogang Mogongoa from the Central University of Technology, with Dr Shalini Ahuja from King’s College London, centre, who facilitated the workshops.

The Division of Public Health at the University of the Free State (UFS) together with the Central University of Technology (CUT), held a successful workshop (first phase) for their project: Capacity building for the use of implementation science in various typologies in low- and middle-income countries for the prevention and/or management of the quadruple burden of disease.

According to the National Institute for Health as well as the World Health Organisation, implementation science supports innovative approaches to identifying, understanding, and overcoming barriers to the adoption, adaptation, integration, scale-up and sustainability of evidence-based interventions, tools, policies, and guidelines. Implementation research therefore pertains to gathering and analysing implementation evidence of effectiveness that determines if the intervention works in real-world circumstances.

The Principal Investigator at UFS is Dr Phindile Shangase from the Division of Public Health, supported by colleagues in the Division, as well as the CUT team, led by Dr Lebogang Mogongoa. The first phase of the project took place from 14-17 October 2024 with the first two days held at UFS.

In this co-funded project, UFS and CUT engage in partnership capacity building for academics and postgraduate students. At the UFS, the project is funded by the Office of the Deputy Vice-Chancellor: Research and Internationalisation and resulted from the CUT and UFS Joint Research Programme Research Grant 9th Call.

Contributing to evidence-based policies and practices

Dr Shangase says the workshops of this project were well attended by academics, researchers, postgraduate and postdoctoral students from different disciplines, and community organisations, including programme managers, as well as clinicians from the Department of Health. Other stakeholders and international students who could not travel for face-to-face interactions attended live on UFS YouTube.

Workshops were facilitated by Dr Shalini Ahuja from King’s College, London, who is an international expert and experienced in this field through engaging in research as well as field facilitation in various low- and middle-income countries.

Says Dr Shangase: “Implementation science is the study of methods and strategies to promote the systematic uptake of research findings. It contributes to evidence-based policies and practices and ensures that they are implemented effectively to achieve their intended outcomes, through the identification of barriers and facilitators to implementation. These strategies can therefore be integrated effectively into routine practice in healthcare, public health, and other fields.

“Reviewed studies indicate that the effectiveness of implementation research is noted in the identification and investigation of factors that address disparities in healthcare delivery and outcomes, including those within the health systems and in the population. In simple terms, the goal of implementation science is to understand how and why some interventions succeed while others fail, and to identify the best ways to integrate research-backed interventions into real-world settings for maximum impact and to ensure they continue to be used and remain effective over time,” says Dr Shangase.

Purpose of project

According to her, in the context of South Africa, implementation science has potential to assist in addressing the quadruple burden of disease which comprise of these colliding epidemics: maternal, newborn and child health; HIV/AIDS and tuberculosis (TB); non-communicable diseases (e.g. cardiovascular diseases, chronic respiratory diseases, cancers, and diabetes); and violence and injury.

The purpose of this project, explains Dr Shangase, is to capacitate academics and postgraduate students at the UFS and CUT as well as community stakeholders with knowledge and skills regarding the processes and factors involved in the successful integration of evidence-based public health improvement interventions into routine practice and policy.

“Implementation science offers a strategic, data-driven approach for South Africa, especially in addressing the country’s unique and complex healthcare challenges. These advantages stem from its focus on translating evidence-based interventions into real-world practice, addressing the quadruple burden of disease and helping overcome systemic obstacles to effective healthcare delivery.

“These advantages make implementation science a vital tool for improving health outcomes and achieving sustainable public health progress in South Africa.”

The next phase of this project is expected to be more innovative and takes place between February and March in 2025 with the inclusion of a multistakeholder team.

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept