Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 November 2024 | Story André Damons | Photo Supplied
Implementation Science Workshop 2024
Building capacity for the use of implementation science. The Principal Investigators of the project; Dr Phindile Shangase from UFS, left, and Dr Lebogang Mogongoa from the Central University of Technology, with Dr Shalini Ahuja from King’s College London, centre, who facilitated the workshops.

The Division of Public Health at the University of the Free State (UFS) together with the Central University of Technology (CUT), held a successful workshop (first phase) for their project: Capacity building for the use of implementation science in various typologies in low- and middle-income countries for the prevention and/or management of the quadruple burden of disease.

According to the National Institute for Health as well as the World Health Organisation, implementation science supports innovative approaches to identifying, understanding, and overcoming barriers to the adoption, adaptation, integration, scale-up and sustainability of evidence-based interventions, tools, policies, and guidelines. Implementation research therefore pertains to gathering and analysing implementation evidence of effectiveness that determines if the intervention works in real-world circumstances.

The Principal Investigator at UFS is Dr Phindile Shangase from the Division of Public Health, supported by colleagues in the Division, as well as the CUT team, led by Dr Lebogang Mogongoa. The first phase of the project took place from 14-17 October 2024 with the first two days held at UFS.

In this co-funded project, UFS and CUT engage in partnership capacity building for academics and postgraduate students. At the UFS, the project is funded by the Office of the Deputy Vice-Chancellor: Research and Internationalisation and resulted from the CUT and UFS Joint Research Programme Research Grant 9th Call.

Contributing to evidence-based policies and practices

Dr Shangase says the workshops of this project were well attended by academics, researchers, postgraduate and postdoctoral students from different disciplines, and community organisations, including programme managers, as well as clinicians from the Department of Health. Other stakeholders and international students who could not travel for face-to-face interactions attended live on UFS YouTube.

Workshops were facilitated by Dr Shalini Ahuja from King’s College, London, who is an international expert and experienced in this field through engaging in research as well as field facilitation in various low- and middle-income countries.

Says Dr Shangase: “Implementation science is the study of methods and strategies to promote the systematic uptake of research findings. It contributes to evidence-based policies and practices and ensures that they are implemented effectively to achieve their intended outcomes, through the identification of barriers and facilitators to implementation. These strategies can therefore be integrated effectively into routine practice in healthcare, public health, and other fields.

“Reviewed studies indicate that the effectiveness of implementation research is noted in the identification and investigation of factors that address disparities in healthcare delivery and outcomes, including those within the health systems and in the population. In simple terms, the goal of implementation science is to understand how and why some interventions succeed while others fail, and to identify the best ways to integrate research-backed interventions into real-world settings for maximum impact and to ensure they continue to be used and remain effective over time,” says Dr Shangase.

Purpose of project

According to her, in the context of South Africa, implementation science has potential to assist in addressing the quadruple burden of disease which comprise of these colliding epidemics: maternal, newborn and child health; HIV/AIDS and tuberculosis (TB); non-communicable diseases (e.g. cardiovascular diseases, chronic respiratory diseases, cancers, and diabetes); and violence and injury.

The purpose of this project, explains Dr Shangase, is to capacitate academics and postgraduate students at the UFS and CUT as well as community stakeholders with knowledge and skills regarding the processes and factors involved in the successful integration of evidence-based public health improvement interventions into routine practice and policy.

“Implementation science offers a strategic, data-driven approach for South Africa, especially in addressing the country’s unique and complex healthcare challenges. These advantages stem from its focus on translating evidence-based interventions into real-world practice, addressing the quadruple burden of disease and helping overcome systemic obstacles to effective healthcare delivery.

“These advantages make implementation science a vital tool for improving health outcomes and achieving sustainable public health progress in South Africa.”

The next phase of this project is expected to be more innovative and takes place between February and March in 2025 with the inclusion of a multistakeholder team.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept