Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 November 2024 | Story André Damons | Photo Supplied
Implementation Science Workshop 2024
Building capacity for the use of implementation science. The Principal Investigators of the project; Dr Phindile Shangase from UFS, left, and Dr Lebogang Mogongoa from the Central University of Technology, with Dr Shalini Ahuja from King’s College London, centre, who facilitated the workshops.

The Division of Public Health at the University of the Free State (UFS) together with the Central University of Technology (CUT), held a successful workshop (first phase) for their project: Capacity building for the use of implementation science in various typologies in low- and middle-income countries for the prevention and/or management of the quadruple burden of disease.

According to the National Institute for Health as well as the World Health Organisation, implementation science supports innovative approaches to identifying, understanding, and overcoming barriers to the adoption, adaptation, integration, scale-up and sustainability of evidence-based interventions, tools, policies, and guidelines. Implementation research therefore pertains to gathering and analysing implementation evidence of effectiveness that determines if the intervention works in real-world circumstances.

The Principal Investigator at UFS is Dr Phindile Shangase from the Division of Public Health, supported by colleagues in the Division, as well as the CUT team, led by Dr Lebogang Mogongoa. The first phase of the project took place from 14-17 October 2024 with the first two days held at UFS.

In this co-funded project, UFS and CUT engage in partnership capacity building for academics and postgraduate students. At the UFS, the project is funded by the Office of the Deputy Vice-Chancellor: Research and Internationalisation and resulted from the CUT and UFS Joint Research Programme Research Grant 9th Call.

Contributing to evidence-based policies and practices

Dr Shangase says the workshops of this project were well attended by academics, researchers, postgraduate and postdoctoral students from different disciplines, and community organisations, including programme managers, as well as clinicians from the Department of Health. Other stakeholders and international students who could not travel for face-to-face interactions attended live on UFS YouTube.

Workshops were facilitated by Dr Shalini Ahuja from King’s College, London, who is an international expert and experienced in this field through engaging in research as well as field facilitation in various low- and middle-income countries.

Says Dr Shangase: “Implementation science is the study of methods and strategies to promote the systematic uptake of research findings. It contributes to evidence-based policies and practices and ensures that they are implemented effectively to achieve their intended outcomes, through the identification of barriers and facilitators to implementation. These strategies can therefore be integrated effectively into routine practice in healthcare, public health, and other fields.

“Reviewed studies indicate that the effectiveness of implementation research is noted in the identification and investigation of factors that address disparities in healthcare delivery and outcomes, including those within the health systems and in the population. In simple terms, the goal of implementation science is to understand how and why some interventions succeed while others fail, and to identify the best ways to integrate research-backed interventions into real-world settings for maximum impact and to ensure they continue to be used and remain effective over time,” says Dr Shangase.

Purpose of project

According to her, in the context of South Africa, implementation science has potential to assist in addressing the quadruple burden of disease which comprise of these colliding epidemics: maternal, newborn and child health; HIV/AIDS and tuberculosis (TB); non-communicable diseases (e.g. cardiovascular diseases, chronic respiratory diseases, cancers, and diabetes); and violence and injury.

The purpose of this project, explains Dr Shangase, is to capacitate academics and postgraduate students at the UFS and CUT as well as community stakeholders with knowledge and skills regarding the processes and factors involved in the successful integration of evidence-based public health improvement interventions into routine practice and policy.

“Implementation science offers a strategic, data-driven approach for South Africa, especially in addressing the country’s unique and complex healthcare challenges. These advantages stem from its focus on translating evidence-based interventions into real-world practice, addressing the quadruple burden of disease and helping overcome systemic obstacles to effective healthcare delivery.

“These advantages make implementation science a vital tool for improving health outcomes and achieving sustainable public health progress in South Africa.”

The next phase of this project is expected to be more innovative and takes place between February and March in 2025 with the inclusion of a multistakeholder team.

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept