Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 November 2024 | Story André Damons | Photo Supplied
Implementation Science Workshop 2024
Building capacity for the use of implementation science. The Principal Investigators of the project; Dr Phindile Shangase from UFS, left, and Dr Lebogang Mogongoa from the Central University of Technology, with Dr Shalini Ahuja from King’s College London, centre, who facilitated the workshops.

The Division of Public Health at the University of the Free State (UFS) together with the Central University of Technology (CUT), held a successful workshop (first phase) for their project: Capacity building for the use of implementation science in various typologies in low- and middle-income countries for the prevention and/or management of the quadruple burden of disease.

According to the National Institute for Health as well as the World Health Organisation, implementation science supports innovative approaches to identifying, understanding, and overcoming barriers to the adoption, adaptation, integration, scale-up and sustainability of evidence-based interventions, tools, policies, and guidelines. Implementation research therefore pertains to gathering and analysing implementation evidence of effectiveness that determines if the intervention works in real-world circumstances.

The Principal Investigator at UFS is Dr Phindile Shangase from the Division of Public Health, supported by colleagues in the Division, as well as the CUT team, led by Dr Lebogang Mogongoa. The first phase of the project took place from 14-17 October 2024 with the first two days held at UFS.

In this co-funded project, UFS and CUT engage in partnership capacity building for academics and postgraduate students. At the UFS, the project is funded by the Office of the Deputy Vice-Chancellor: Research and Internationalisation and resulted from the CUT and UFS Joint Research Programme Research Grant 9th Call.

Contributing to evidence-based policies and practices

Dr Shangase says the workshops of this project were well attended by academics, researchers, postgraduate and postdoctoral students from different disciplines, and community organisations, including programme managers, as well as clinicians from the Department of Health. Other stakeholders and international students who could not travel for face-to-face interactions attended live on UFS YouTube.

Workshops were facilitated by Dr Shalini Ahuja from King’s College, London, who is an international expert and experienced in this field through engaging in research as well as field facilitation in various low- and middle-income countries.

Says Dr Shangase: “Implementation science is the study of methods and strategies to promote the systematic uptake of research findings. It contributes to evidence-based policies and practices and ensures that they are implemented effectively to achieve their intended outcomes, through the identification of barriers and facilitators to implementation. These strategies can therefore be integrated effectively into routine practice in healthcare, public health, and other fields.

“Reviewed studies indicate that the effectiveness of implementation research is noted in the identification and investigation of factors that address disparities in healthcare delivery and outcomes, including those within the health systems and in the population. In simple terms, the goal of implementation science is to understand how and why some interventions succeed while others fail, and to identify the best ways to integrate research-backed interventions into real-world settings for maximum impact and to ensure they continue to be used and remain effective over time,” says Dr Shangase.

Purpose of project

According to her, in the context of South Africa, implementation science has potential to assist in addressing the quadruple burden of disease which comprise of these colliding epidemics: maternal, newborn and child health; HIV/AIDS and tuberculosis (TB); non-communicable diseases (e.g. cardiovascular diseases, chronic respiratory diseases, cancers, and diabetes); and violence and injury.

The purpose of this project, explains Dr Shangase, is to capacitate academics and postgraduate students at the UFS and CUT as well as community stakeholders with knowledge and skills regarding the processes and factors involved in the successful integration of evidence-based public health improvement interventions into routine practice and policy.

“Implementation science offers a strategic, data-driven approach for South Africa, especially in addressing the country’s unique and complex healthcare challenges. These advantages stem from its focus on translating evidence-based interventions into real-world practice, addressing the quadruple burden of disease and helping overcome systemic obstacles to effective healthcare delivery.

“These advantages make implementation science a vital tool for improving health outcomes and achieving sustainable public health progress in South Africa.”

The next phase of this project is expected to be more innovative and takes place between February and March in 2025 with the inclusion of a multistakeholder team.

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept