Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 October 2024 | Story Leonie Bolleurs | Photo Supplied
Thandi Mazibuko
Thandi Mazibuko, with her presentation: LED there be light, was the overall institutional winner in the PhD category and the runner-up in the national competition of this year’s 3MT competition.

The Centre for Graduate Support (CGS) recently (11 October 2024) hosted the annual institutional Three-Minute Thesis Competition (3MT), which was followed by the national competition (25 October). This year, the nationals took place on the UFS Bloemfontein Campus. According to Tshepiso Mokoena, responsible for Research Capacity Development in CGS, the participating master’s and PhD students gave well-prepared presentations. The competition aims to equip postgraduate students with valuable communication and presentation skills.

She says that postgraduate students are encouraged to do research that will benefit the community. “To do this, students should be able to communicate and present their research to a non-specialist audience. The 3MT competition trains and equips them with skills that they will use in their community and workplace,” she noted.

Overall PhD winner

The overall winner in the PhD category of the UFS competition was Thandi Mazibuko with her presentation: LED there be light. Thandi was also announced as the first runner-up at the national competition.

Growing up in Qwaqwa, Thandi’s passion for mathematics and the natural sciences led her to pursue a BSc Physics degree at the UFS in 2013, followed by an honours at the UFS. She then completed her MSc at the University of the Western Cape and worked as a science engagement intern at iThemba LABS in Cape Town, which inspired her to start a YouTube channel with more than 4 800 subscribers, called Thandisayensi. On this channel she uploads Physical Sciences videos for learners in grades 10-12.

Thandi states that she loves learning and being in learning environments; in 2022, she registered for a PhD in Solid State Physics under the supervision of Prof Hendrik Swart and Prof David Motaung.

Her research focuses on synthesising a phosphor material capable of emitting red, green, and blue light, which, when combined, creates the perception of white light. Thandi compared the research process to cooking, explaining how the preparation of phosphors resembles food preparation. She believes that relatable language, analogies, and storytelling are important tools in science communication.

Thandi says that this competition was a valuable platform to improve her science communication skills. “It is an interesting challenge to explain your work in 180 seconds to an audience with different backgrounds,” she said, adding that she is excited to represent the UFS at the national competition.

The other winners

Each department hosts its own 3MT competition, and the winners and runners-up in both the master’s and PhD categories then represent their faculty in the institutional competition.

The master’s category winners from other faculties were:

  • Faculty of Economic and Management Sciences: Evodia Mohoanyane with Does SI/tutoring work and what about it works? Evodia was also the overall winner in the institutional competition in the master’s category.
  • The Humanities: Yonwaba Matshobotiyana with Of Speaking and Visibility: Black Women Poets' Voices in South Africa
  • Health Sciences: Viwe Fokazi with Establishing a novel 3D doxorubicin-resistant triple-negative breast cancer spheroid model

In the PhD category, the winners were:

  • Economic and Management Sciences: Chrizaan Grobbelaar with The use of gamification to enhance retirement preparedness of millennials
  • The Humanities: Sheree Pretorius with The Psychometric Properties of the Prison Adjustment Questionnaire (PAQ) among South African Male Incarcerated Offenders

With Thandi, first runner-up of the institutional competition, Chrizaan, participated in the national 3MT competition. Universities such as the Nelson Mandela University, UNISA, University of KwaZulu-Natal, University of the Western Cape, University of Johannesburg, and the Central University of Technology were also present. 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept