Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 October 2024 | Story Leonie Bolleurs | Photo Supplied
Thandi Mazibuko
Thandi Mazibuko, with her presentation: LED there be light, was the overall institutional winner in the PhD category and the runner-up in the national competition of this year’s 3MT competition.

The Centre for Graduate Support (CGS) recently (11 October 2024) hosted the annual institutional Three-Minute Thesis Competition (3MT), which was followed by the national competition (25 October). This year, the nationals took place on the UFS Bloemfontein Campus. According to Tshepiso Mokoena, responsible for Research Capacity Development in CGS, the participating master’s and PhD students gave well-prepared presentations. The competition aims to equip postgraduate students with valuable communication and presentation skills.

She says that postgraduate students are encouraged to do research that will benefit the community. “To do this, students should be able to communicate and present their research to a non-specialist audience. The 3MT competition trains and equips them with skills that they will use in their community and workplace,” she noted.

Overall PhD winner

The overall winner in the PhD category of the UFS competition was Thandi Mazibuko with her presentation: LED there be light. Thandi was also announced as the first runner-up at the national competition.

Growing up in Qwaqwa, Thandi’s passion for mathematics and the natural sciences led her to pursue a BSc Physics degree at the UFS in 2013, followed by an honours at the UFS. She then completed her MSc at the University of the Western Cape and worked as a science engagement intern at iThemba LABS in Cape Town, which inspired her to start a YouTube channel with more than 4 800 subscribers, called Thandisayensi. On this channel she uploads Physical Sciences videos for learners in grades 10-12.

Thandi states that she loves learning and being in learning environments; in 2022, she registered for a PhD in Solid State Physics under the supervision of Prof Hendrik Swart and Prof David Motaung.

Her research focuses on synthesising a phosphor material capable of emitting red, green, and blue light, which, when combined, creates the perception of white light. Thandi compared the research process to cooking, explaining how the preparation of phosphors resembles food preparation. She believes that relatable language, analogies, and storytelling are important tools in science communication.

Thandi says that this competition was a valuable platform to improve her science communication skills. “It is an interesting challenge to explain your work in 180 seconds to an audience with different backgrounds,” she said, adding that she is excited to represent the UFS at the national competition.

The other winners

Each department hosts its own 3MT competition, and the winners and runners-up in both the master’s and PhD categories then represent their faculty in the institutional competition.

The master’s category winners from other faculties were:

  • Faculty of Economic and Management Sciences: Evodia Mohoanyane with Does SI/tutoring work and what about it works? Evodia was also the overall winner in the institutional competition in the master’s category.
  • The Humanities: Yonwaba Matshobotiyana with Of Speaking and Visibility: Black Women Poets' Voices in South Africa
  • Health Sciences: Viwe Fokazi with Establishing a novel 3D doxorubicin-resistant triple-negative breast cancer spheroid model

In the PhD category, the winners were:

  • Economic and Management Sciences: Chrizaan Grobbelaar with The use of gamification to enhance retirement preparedness of millennials
  • The Humanities: Sheree Pretorius with The Psychometric Properties of the Prison Adjustment Questionnaire (PAQ) among South African Male Incarcerated Offenders

With Thandi, first runner-up of the institutional competition, Chrizaan, participated in the national 3MT competition. Universities such as the Nelson Mandela University, UNISA, University of KwaZulu-Natal, University of the Western Cape, University of Johannesburg, and the Central University of Technology were also present. 

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept