Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 October 2024 | Story Anthony Mthembu | Photo Kaleidoscope
S4F2024
The Science-for-the-Future (S4F) unit in the Faculty of Education hosted a summit on 13 September 2024. The event, which was held on the University of the Free State Bloemfontein Campus, was well attended by nearly 300 guests from across the country.

Teachers from across the country and representatives of nine other universities recently gathered at the University of the Free State (UFS) to celebrate the achievements of the S4F Teacher Professional Development programmes as well as the successful collaboration between the UFS and other universities in this regard.

The Science-for-the-Future (S4F) unit in the Faculty of Education hosted a summit in the Centenary Complex on the Bloemfontein Campus on 13 September 2024. The acting Vice-Chancellor and Principal of the UFS, Prof Anthea Rhoda, delivered the keynote address at the summit. Representatives from the South African National Roads Agency (SANRAL) – the official funder of the Science for the Future initiative – were also present, along with about 300 attendees, representing teachers, participating universities, representatives from the Department of Basic Education, and other stakeholders.

In her welcoming address, Prof Matseliso Mokhele Makgalwa, Vice-Dean of the Faculty of Education, said the event focuses, among others, on fostering collaboration and innovation across academic and professional communities. She later highlighted the fact that the project implementation period of three years makes provision for continued visits to the participating schools to sustain the continuity over time.

Dr Cobus van Breda, Programme Director of S4F and Project Manager of the Universities Collaboration initiative, elaborated on the rationale of the project as well as the collaboration with nine other universities. He stated, “We know from research that there are many factors that prevent learners, especially in rural areas in South Africa, from excelling in Mathematics and Science. These include subject content knowledge, lack of teaching resources at school and at home, language of learning and teaching that differs from home language, along with a lack of parental involvement, among others.” He said the project aims to address these rampant challenges by not only empowering teachers with the necessary teaching skills and content knowledge, but also providing classroom resources to benefit learners and adding a parental involvement component to the project. 

To scale the project benefits for the rest of the country, the UFS has partnered with nine other universities; collectively, more than one hundred thousand project participants (teachers, learners, and parents) could be impacted during 2024. The collaborating universities are Nelson Mandela University, the Walter Sisulu University, the University of Limpopo, the University of KwaZulu-Natal, the University of Mpumalanga, Sol Plaatje University, the University of Venda, Stellenbosch University, and Nort-West University.

Representatives from the Department of Basic Education and other institutions were also given the opportunity to highlight the impact of the initiative in their respective institutions. Maki Molale, Senior Education Specialist  from the Free State Department of Basic Education, reflected on the contribution of the project and said, “In the Department of Education we report on these key areas: teacher development, direct learner support, parental involvement, the utilisation of resources and partnerships … they are all addressed in this project.” She thanked the University of the Free State and the funder, SANRAL. Dr Glynnis Daries from Sol Plaatje University spoke on behalf of the collaborating universities and explained from an academic perspective to attendees how the project implementation strategy of S4F relates to Bronfenbrenner’s bioecological theory of human development and how the respective project components showcase the five levels of this theory.

During the keynote address, Prof Rhoda emphasised the importance of Mathematics skills, teaching children the capacity to solve problems and how it is extremely important to be analytical in one’s approach to resolving complexities and to work through problems in a methodical and logical manner. In the end, if one does this, no challenge is insurmountable. She commended the teachers present for fulfilling a vital task and pointed out the heavy responsibility on their shoulders. In this regard, she said, “As the UFS, and through the Science for the Future project, we are proud to support you in your work. The project is a vehicle through which we fulfil the central goals of the UFS, which are to impact the community in a positive way, and to instil a culture of excellence in a caring environment. We will continue to support you in your work and do all that we can to make your work more fulfilling and impactful – this is the promise of the UFS to our partners through this project.”

In acknowledging the contribution of the respective collaborating universities, Prof Rhoda emphasised that partnerships and collaborations are not easy to build, and most importantly, to maintain … “but what I’m hearing through these engagements today is that these partnerships are not just being maintained, they are expanded … the collaboration impacted the different institutions as well as, most importantly, the communities, close to and around them”. She alluded to the fact that universities’ roles are not just to retain and accept students, but universities have an important role in being the anchor within the society and communities in which they find themselves. According to her, the contribution of SANRAL and other project funders thus extends far beyond teachers’ professional development and community empowerment, it contributes towards assisting universities in engaged scholarship activities.

In reflecting on the parental involvement component of the programme, Themba Mhambi – Chairperson of the SANRAL Board – said that apart from being a maths and science project, and a project that is developmental, that is nation building, “… it becomes a kind of template for perhaps how our education system needs to be re-constructed … reclaiming the old times when parents and teachers worked together with the child in the centre”.  

News Archive

Nobel Prize-winner presents first lecture at Vice-Chancellor’s prestige lecture series
2017-11-17


 Description: Prof Levitt visit Tags: Prof Levitt visit

At the first lecture in the UFS Vice Chancellor’s Prestige Lecture series,
were from the left: Prof Jeanette Conradie, UFS Department of Chemistry;
Prof Michael Levitt, Nobel Prize-winner in Chemistry, biophysicist and
professor in structural biology at Stanford University; Prof Francis Petersen,
UFS Vice-Chancellor and Rector; and Prof Corli Witthuhn,
UFS Vice-Rector: Research. 
Photo: Johan Roux

South African born biophysicist and Nobel Prize-winner in Chemistry, Prof Michael Levitt, paid a visit to the University of the Free Sate (UFS) as part of the Academy of Science of South Africa’s (ASSAf) Distinguished Visiting Scholars’ Programme. 

Early this week the professor in structural biology at Stanford University in the US presented a captivating lecture on the Bloemfontein Campus on his lifetime’s work that earned him the Nobel Prize in 2013. His lecture launched the UFS Vice-Chancellor’s Prestige Lecture series, aimed at knowledge sharing within, and beyond our university boundaries. 

Prof Levitt was one of the first researchers to conduct molecular dynamics simulations of DNA and proteins and developed the first software for this purpose. He received the prize for Chemistry, together with Martin Karplus and Arieh Warshel, “for the development of multiscale models for complex chemical systems”.

Attending the lecture were members of UFS management, academic staff from a range of faculties and other universities as well as young researchers. “Multiscale modelling is very much based on something that makes common sense,” Prof Levitt explained. “And that is to makes things as simple as possible, but not simpler. Everything needs to have the right level of simplicity, that is not too simple, but not too complicated.”  

An incredible mind
Prof Levitt enrolled for applied mathematics at the University of Pretoria at the age of 15. He visited his uncle and aunt in London after his first-year exams, and decided to stay on because they had a television, he claims. A series on molecular biology broadcast on BBC, sparked an interest that would lead Prof Levitt via Israel, and Cambridge, to the Nobel Prize stage – all of which turned out to be vital building blocks for his research career. 

Technology to the rescue
The first small protein model that Prof Levitt built was the size of a room. But that exercise led to the birth of multiscale modelling of macromolecules. For the man on the street, that translates to computerised models used to simulate protein action, and reaction. With some adaptations, the effect of medication can be simulated on human protein in a virtual world. 

“I was lucky to stand on the shoulder of giants,” he says about his accomplishments, and urges the young to be good and kind. “Be passionate about what you do, be persistent, and be original,” he advised.  

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept