Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 October 2024 | Story Anthony Mthembu | Photo Kaleidoscope
S4F2024
The Science-for-the-Future (S4F) unit in the Faculty of Education hosted a summit on 13 September 2024. The event, which was held on the University of the Free State Bloemfontein Campus, was well attended by nearly 300 guests from across the country.

Teachers from across the country and representatives of nine other universities recently gathered at the University of the Free State (UFS) to celebrate the achievements of the S4F Teacher Professional Development programmes as well as the successful collaboration between the UFS and other universities in this regard.

The Science-for-the-Future (S4F) unit in the Faculty of Education hosted a summit in the Centenary Complex on the Bloemfontein Campus on 13 September 2024. The acting Vice-Chancellor and Principal of the UFS, Prof Anthea Rhoda, delivered the keynote address at the summit. Representatives from the South African National Roads Agency (SANRAL) – the official funder of the Science for the Future initiative – were also present, along with about 300 attendees, representing teachers, participating universities, representatives from the Department of Basic Education, and other stakeholders.

In her welcoming address, Prof Matseliso Mokhele Makgalwa, Vice-Dean of the Faculty of Education, said the event focuses, among others, on fostering collaboration and innovation across academic and professional communities. She later highlighted the fact that the project implementation period of three years makes provision for continued visits to the participating schools to sustain the continuity over time.

Dr Cobus van Breda, Programme Director of S4F and Project Manager of the Universities Collaboration initiative, elaborated on the rationale of the project as well as the collaboration with nine other universities. He stated, “We know from research that there are many factors that prevent learners, especially in rural areas in South Africa, from excelling in Mathematics and Science. These include subject content knowledge, lack of teaching resources at school and at home, language of learning and teaching that differs from home language, along with a lack of parental involvement, among others.” He said the project aims to address these rampant challenges by not only empowering teachers with the necessary teaching skills and content knowledge, but also providing classroom resources to benefit learners and adding a parental involvement component to the project. 

To scale the project benefits for the rest of the country, the UFS has partnered with nine other universities; collectively, more than one hundred thousand project participants (teachers, learners, and parents) could be impacted during 2024. The collaborating universities are Nelson Mandela University, the Walter Sisulu University, the University of Limpopo, the University of KwaZulu-Natal, the University of Mpumalanga, Sol Plaatje University, the University of Venda, Stellenbosch University, and Nort-West University.

Representatives from the Department of Basic Education and other institutions were also given the opportunity to highlight the impact of the initiative in their respective institutions. Maki Molale, Senior Education Specialist  from the Free State Department of Basic Education, reflected on the contribution of the project and said, “In the Department of Education we report on these key areas: teacher development, direct learner support, parental involvement, the utilisation of resources and partnerships … they are all addressed in this project.” She thanked the University of the Free State and the funder, SANRAL. Dr Glynnis Daries from Sol Plaatje University spoke on behalf of the collaborating universities and explained from an academic perspective to attendees how the project implementation strategy of S4F relates to Bronfenbrenner’s bioecological theory of human development and how the respective project components showcase the five levels of this theory.

During the keynote address, Prof Rhoda emphasised the importance of Mathematics skills, teaching children the capacity to solve problems and how it is extremely important to be analytical in one’s approach to resolving complexities and to work through problems in a methodical and logical manner. In the end, if one does this, no challenge is insurmountable. She commended the teachers present for fulfilling a vital task and pointed out the heavy responsibility on their shoulders. In this regard, she said, “As the UFS, and through the Science for the Future project, we are proud to support you in your work. The project is a vehicle through which we fulfil the central goals of the UFS, which are to impact the community in a positive way, and to instil a culture of excellence in a caring environment. We will continue to support you in your work and do all that we can to make your work more fulfilling and impactful – this is the promise of the UFS to our partners through this project.”

In acknowledging the contribution of the respective collaborating universities, Prof Rhoda emphasised that partnerships and collaborations are not easy to build, and most importantly, to maintain … “but what I’m hearing through these engagements today is that these partnerships are not just being maintained, they are expanded … the collaboration impacted the different institutions as well as, most importantly, the communities, close to and around them”. She alluded to the fact that universities’ roles are not just to retain and accept students, but universities have an important role in being the anchor within the society and communities in which they find themselves. According to her, the contribution of SANRAL and other project funders thus extends far beyond teachers’ professional development and community empowerment, it contributes towards assisting universities in engaged scholarship activities.

In reflecting on the parental involvement component of the programme, Themba Mhambi – Chairperson of the SANRAL Board – said that apart from being a maths and science project, and a project that is developmental, that is nation building, “… it becomes a kind of template for perhaps how our education system needs to be re-constructed … reclaiming the old times when parents and teachers worked together with the child in the centre”.  

News Archive

Eye tracker device a first in Africa
2013-07-31

 

 31 July 2013

Keeping an eye on empowerment

"If we can see what you see, we can think what you think."

Eye-tracking used to be one of those fabulous science-fiction inventions, along with Superman-like bionic ability. Could you really use the movement of your eyes to read people's minds? Or drive your car? Or transfix your enemy with a laser-beam?

Well, actually, yes, you can (apart, perhaps, from the laser beam… ). An eye tracker is not something from science fiction; it actually exists, and is widely used around the world for a number of purposes.

Simply put, an eye tracker is a device for measuring eye positions and eye movement. Its most obvious use is in marketing, to find out what people are looking at (when they see an advertisement, for instance, or when they are wandering along a supermarket aisle). The eye tracker measures where people look first, what attracts their attention, and what they look at the longest. It is used extensively in developed countries to predict consumer behaviour, based on what – literally – catches the eye.

On a more serious level, psychologists, therapists and educators can also use this device for a number of applications, such as analysis and education. And – most excitingly – eye tracking can be used by disabled people to use a computer and thereby operate a number of devices and machines. Impaired or disabled people can use eye tracking to get a whole new lease on life.

In South Africa and other developing countries, however, eye tracking is not widely used. Even though off-the-shelf webcams and open-source software can be obtained extremely cheaply, they are complex to use and the quality cannot be guaranteed. Specialist high-quality eye-tracking devices have to be imported, and they are extremely expensive – or rather – they used to be. Not anymore.

The Department of Computer Science and Informatics (CSI) at the University of the Free State has succeeded in developing a high-quality eye tracker at a fraction of the cost of the imported devices. Along with the hardware, the department has also developed specialised software for a number of applications. These would be useful for graphic designers, marketers, analysts, cognitive psychologists, language specialists, ophthalmologists, radiographers, occupational and speech therapists, and people with disabilities. In the not-too-distant future, even fleet owners and drivers would be able to use this technology.

"The research team at CSI has many years of eye-tracking experience," says team leader Prof Pieter Blignaut, "both with the technical aspect as well as the practical aspect. We also provide a multi-dimensional service to clients that includes the equipment, training and support. We even provide feedback to users.

"We have a basic desktop model available that can be used for research, and can be adapted so that people can interact with a computer. It will be possible in future to design a device that would be able to operate a wheelchair. We are working on a model incorporated into a pair of glasses which will provide gaze analysis for people in their natural surroundings, for instance when driving a vehicle.

"Up till now, the imported models have been too expensive," he continues. "But with our system, the technology is now within reach for anyone who needs it. This could lead to economic expansion and job creation."

The University of the Free State is the first manufacturer of eye-tracking devices in Africa, and Blignaut hopes that the project will contribute to nation-building and empowerment.

"The biggest advantage is that we now have a local manufacturer providing a quality product with local training and support."

In an eye-tracking device, a tiny infra-red light shines on the eye and causes a reflection which is picked up by a high-resolution camera. Every eye movement causes a change in the reflection, which is then mapped. Infra-red light is not harmful to the eye and is not even noticed. Eye movement is then completely natural.

Based on eye movements, a researcher can study cognitive patterns, driver behaviour, attention spans, even thinking patterns. A disabled person could use their eye-movements to interact with a computer, with future technology (still in development) that would enable that computer to control a wheelchair or operate machinery.

The UFS recently initiated the foundation of an eye-tracking interest group for South Africa (ETSA) and sponsor a biennial-eye tracking conference. Their website can be found at www.eyetrackingsa.co.za.

“Eye tracking is an amazing tool for empowerment and development in Africa, “ says Blignaut, “but it is not used as much as it should be, because it is seen as too expensive. We are trying to bring this technology within the reach of anyone and everyone who needs it.”

Issued by: Lacea Loader
Director: Strategic Communication

Telephone: +27 (0) 51 401 2584
Cell: +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept