Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 October 2024 | Story Anthony Mthembu | Photo Kaleidoscope
S4F2024
The Science-for-the-Future (S4F) unit in the Faculty of Education hosted a summit on 13 September 2024. The event, which was held on the University of the Free State Bloemfontein Campus, was well attended by nearly 300 guests from across the country.

Teachers from across the country and representatives of nine other universities recently gathered at the University of the Free State (UFS) to celebrate the achievements of the S4F Teacher Professional Development programmes as well as the successful collaboration between the UFS and other universities in this regard.

The Science-for-the-Future (S4F) unit in the Faculty of Education hosted a summit in the Centenary Complex on the Bloemfontein Campus on 13 September 2024. The acting Vice-Chancellor and Principal of the UFS, Prof Anthea Rhoda, delivered the keynote address at the summit. Representatives from the South African National Roads Agency (SANRAL) – the official funder of the Science for the Future initiative – were also present, along with about 300 attendees, representing teachers, participating universities, representatives from the Department of Basic Education, and other stakeholders.

In her welcoming address, Prof Matseliso Mokhele Makgalwa, Vice-Dean of the Faculty of Education, said the event focuses, among others, on fostering collaboration and innovation across academic and professional communities. She later highlighted the fact that the project implementation period of three years makes provision for continued visits to the participating schools to sustain the continuity over time.

Dr Cobus van Breda, Programme Director of S4F and Project Manager of the Universities Collaboration initiative, elaborated on the rationale of the project as well as the collaboration with nine other universities. He stated, “We know from research that there are many factors that prevent learners, especially in rural areas in South Africa, from excelling in Mathematics and Science. These include subject content knowledge, lack of teaching resources at school and at home, language of learning and teaching that differs from home language, along with a lack of parental involvement, among others.” He said the project aims to address these rampant challenges by not only empowering teachers with the necessary teaching skills and content knowledge, but also providing classroom resources to benefit learners and adding a parental involvement component to the project. 

To scale the project benefits for the rest of the country, the UFS has partnered with nine other universities; collectively, more than one hundred thousand project participants (teachers, learners, and parents) could be impacted during 2024. The collaborating universities are Nelson Mandela University, the Walter Sisulu University, the University of Limpopo, the University of KwaZulu-Natal, the University of Mpumalanga, Sol Plaatje University, the University of Venda, Stellenbosch University, and Nort-West University.

Representatives from the Department of Basic Education and other institutions were also given the opportunity to highlight the impact of the initiative in their respective institutions. Maki Molale, Senior Education Specialist  from the Free State Department of Basic Education, reflected on the contribution of the project and said, “In the Department of Education we report on these key areas: teacher development, direct learner support, parental involvement, the utilisation of resources and partnerships … they are all addressed in this project.” She thanked the University of the Free State and the funder, SANRAL. Dr Glynnis Daries from Sol Plaatje University spoke on behalf of the collaborating universities and explained from an academic perspective to attendees how the project implementation strategy of S4F relates to Bronfenbrenner’s bioecological theory of human development and how the respective project components showcase the five levels of this theory.

During the keynote address, Prof Rhoda emphasised the importance of Mathematics skills, teaching children the capacity to solve problems and how it is extremely important to be analytical in one’s approach to resolving complexities and to work through problems in a methodical and logical manner. In the end, if one does this, no challenge is insurmountable. She commended the teachers present for fulfilling a vital task and pointed out the heavy responsibility on their shoulders. In this regard, she said, “As the UFS, and through the Science for the Future project, we are proud to support you in your work. The project is a vehicle through which we fulfil the central goals of the UFS, which are to impact the community in a positive way, and to instil a culture of excellence in a caring environment. We will continue to support you in your work and do all that we can to make your work more fulfilling and impactful – this is the promise of the UFS to our partners through this project.”

In acknowledging the contribution of the respective collaborating universities, Prof Rhoda emphasised that partnerships and collaborations are not easy to build, and most importantly, to maintain … “but what I’m hearing through these engagements today is that these partnerships are not just being maintained, they are expanded … the collaboration impacted the different institutions as well as, most importantly, the communities, close to and around them”. She alluded to the fact that universities’ roles are not just to retain and accept students, but universities have an important role in being the anchor within the society and communities in which they find themselves. According to her, the contribution of SANRAL and other project funders thus extends far beyond teachers’ professional development and community empowerment, it contributes towards assisting universities in engaged scholarship activities.

In reflecting on the parental involvement component of the programme, Themba Mhambi – Chairperson of the SANRAL Board – said that apart from being a maths and science project, and a project that is developmental, that is nation building, “… it becomes a kind of template for perhaps how our education system needs to be re-constructed … reclaiming the old times when parents and teachers worked together with the child in the centre”.  

News Archive

UFS to host one of three world summits on crystallography
2014-04-15

 
Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, with prof Gautam Desiraju, president of the IUCr (front right) and others to commemorate the Nobel prize winner Max von Laue. (Photo's: Milosz Ruszkowski, Grzegorz Dutkiewicz)

Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, to commemorate the Nobel prize winner Max von Laue at a special Laue Symposium organised by prof Mariusz Jaskolski from the A. Mickiewicz University in Poznan.

Max von Laue, who spent his early childhood in Poznan, was the first scientist to diffract X-rays with a crystal.

2014 has been declared by the United Nations as the International Year of Crystallography, and it was recently officially opened at the UNESCO headquarters in Paris, France, by the Secretary-General of the UN, Ban Ki-moon. The International Year of Crystallography celebrates the centennial of the work of Max von Laue and the father and son, William Henry and William Laurence Bragg.

As part of the celebrations, Prof Roodt, president of the European Crystallographic Association, one of the three regional affiliates (Americas, Europe and Africa; Asia and Australasia) of the International Union of Crystallography (IUCr), was invited by the president of the IUCr, Prof Gautam Desiraju, to host one of the three world summits, wherein crystallography is to showcase its achievements and strategise for the future.

The summit and conference will take place on the Bloemfontein Campus of the UFS from 12 to 17 October 2014 and is titled: 'Crystallography as vehicle to promote science in Africa and beyond.' It is an ambitious meeting wherein it is anticipated to bring the French-, English- and Arab-speaking nations of Africa together to strategise how science can be expanded, and to offer possibilities for this as nestled in crystallography. Young and established scientists, and politicians associated with science and science management, are the target audience to be brought together in Bloemfontein.

Dr Thomas Auf der Heyde, acting Director General of the South African Department of Science and Technology (DST), has committed some R500 000 for this effort, while the International Union of Crystallography provided R170 000.

“Crystals and crystallography form an integrated part of our daily lives, form bones and teeth, to medicines and viruses, new catalysts, jewellery, colour pigments, chocolates, electronics, batteries, metal blades in airplane turbines, panels for solar energy and many more. In spite of this, unfortunately, not many people know much about X-ray crystallography, although it is probably one of the greatest innovations of the twentieth century. Determining the structure of the DNA was one of the most significant scientific events of the 20th century. It has helped understand how genetic messages are being passed on between cells inside our body – everything from the way instructions are sent to proteins to fight infections, to how life is reproduced.

“At the UFS, crystallography finds application in Chemistry, Physics, Biology, Mathematics, Geology, Engineering and the Medical fields. Crystallography is used by the Curiosity Rover, analysing the substances and minerals on Mars!

“The UFS’s Departments of Chemistry and Physics, in particular, have advanced instruments and important research thrusts wherein X-ray crystallography has formed a central part for more than 40 years.

“Crystallography has produced some 28 Nobel prize winners over the past 100 years and continues to provide the means for fundamental and applied research,” said Prof Roodt.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept