Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 October 2024 | Story André Damons | Photo Supplied
Deaf awareness Campaign 2024
Boipelo Leteane, Amahle Jemane, Zinzile Sibiya (Speech-Language Pathologist at UAH), Ntsatsi Dingaan-Mokushane, Andani Madzivhandila, Yolanda Nzume (Administration Clerk at UAH) and Dr Phindile Shangase at the Deaf Awareness Campaign at the UFS.

The Department of Speech Therapy and Audiology at Universitas Academic Hospital (UAH), in partnership with the Division of Public Health at the University of the Free State (UFS) recently held their annual Deaf Awareness Campaign with much success.

The campaign, which is the brainchild of Andani Madzivhandila, a Cochlear Implant MAPping Audiologist at Universitas Academic Hospital (UAH), is in its second year and was attended by Deaf students from the UFS, community members and academics from the UFS Faculty of Health Sciences, including Dr Phindile Shangase from the Division of Public Health at the UFS in collaboration with UAH Speech Therapy and Audiology staff.

Purpose of the event

The event took place on 28 September 2024 in the foyer of the Francoise Retief building. September is the International Month for Deaf People. The Department of Otorhinolaryngology and Med-EL assisted with some sponsorship to make the event a success. Ntsatsi Dingaan-Mokushane, the Assistant Director for Speech Therapy and Audiology at UAH, opened the ceremony and highlighted the importance of Deaf Awareness Campaigns in general and further elaborated on the World Federation of the Deaf theme for 2024, which is “Sign up for sign language rights”.

Dr Shangase shared her experiences and challenges of living with hearing loss and how she manages it, and further elaborated that the purpose of the event was to raise awareness of the different types of hearing loss, especially deafness. It was also to raise awareness of the challenges encountered by Deaf people and to discuss available technologies to assist those with hearing loss as well as those who are born profoundly Deaf.

The event is organised to share experiences from professionals, those with hearing loss as well as the Deaf community, to share experiences on coping and managing life with hearing loss as well as deafness. The organisers try to educate the public about Deaf culture, sign language and the experiences of Deaf people and to help combat stereotypes, stigmas and misconceptions surrounding deafness. The event is also to promote inclusion and encourage equal access to education, employment, healthcare as well as breaking down communication barriers and address systemic and social barriers that hinder Deaf individuals’ participation.

Sharing lived experiences

According to Dr Shangase, the event highlighted the progress as well as gaps in support interventions for those who live with hearing loss and deafness. Says Dr Shangase: “Availability of technologies was highlighted as facilitating different forms of participation for those with hearing loss and deafness. However, it was clear that most of the available technologies are not being adopted in workplaces as well as in communities.”

Boipelo Leteane, a parent of a two-year-old child who was born deaf, shared her experiences and her journey before and after her child had undergone a cochlear implant, while Madzivhandila shed some light on the challenges faced by healthcare professionals when hearing loss/deafness is diagnosed and needs to be managed. 

Amahle Jemane also shared her personal experiences and challenges she faces daily as a signing young female in South Africa, where the majority of the population use spoken language, and she uses South African Sign Language (SASL). 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept