Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 October 2024 | Story André Damons | Photo Supplied
Dr Mutshidzi Mulondo
Dr Mutshidzi Mulondo, academic in the Division of Public Health within the Faculty of Health Sciences at UFS.

Dr Mutshidzi Mulondo, an academic in the Division of Public Health within the Faculty of Health Sciences, at the University of the Free State (UFS), has won a prestigious Global Health Award at the margins of the Global Health Summit in London, the UK.

Dr Mulondo, who is a Novartis Reimagining Healthcare Scholar and a Visiting Scholar at the Beaver College of Health Sciences at Appalachian State University, in the US, was a finalist in two categories: ‘Mental Health and Well-being’ and ‘Rising Star’. She won the Zenith Global Health Award under the category ‘Mental Health and Well-being’. The awards ceremony took place on 28 September and saw health professionals and academics gather in Europe for the auspicious occasion.

“This nomination and selection are an honour that bears testament to my dedication and commitment to SDG 3 (Good Health and Well-being). I hope this win serves as inspiration to young people, particularly to young women in academia and in the sciences,” says Dr Mulondo. The awards are an esteemed platform renowned for celebrating global recognition and excellence, fostering collaboration and innovation in the healthcare sector. They further serve as recognition for contributions made through education, research and/or technology and innovation.

Eco-anxiety

Dr Mulondo, who was invited to attend the summit for the first time, joined a panel of speakers on the session theme ‘mental health and climate change’ where she shared insights on eco-anxiety – the intersection of climate change and mental health which was coined by Albrecht as the chronic fear of environmental change.

Research by the McKinsey Health Institute, says Dr Mulondo, a fellow of the UFS Emerging Scholar Accelerator Programme (ESAP) and member of the UNESCO AG for Women in Science, indicates that more than 75% of young people are pessimistic about the future due to climate change. Most young people in the activism frontlines experience activist burn-out from consistent campaigning, while others experience eco-gaslighting from those who feel climate change is a non-issue. These negative emotions are further exacerbated by young people’s exposure to social media of constant images and conversations about environmental degradation due to climate change.

Pact for the future

Dr Mulondo flew to London from New York after participating in the 79th United Nations General Assembly’s Summit of the Future and Science Summit, as well as the New York Climate Week. She further provided insights into the adoption of the Pact for the Future which was adopted during the Summit of the Future. “With only 17% of the Sustainable Development Goals (SDGs) targets on track to be achieved by 2030, 18% stagnant and 17% regressed to pre-2015 when the goals were first adopted (SDG Report 2024), Mental Health still remains among 10 global health issues to track according to the World Health Organisation (WHO),” says Dr Mulondo.

“The Summit of the Future, which is regarded as a once-in-a-generation high-level event,” she continues, “was aimed at establishing a new global consensus to safeguard the present and future generations. Current challenges such as health pandemics, political unrest, and climatic changes were factored into discussions to keep apace with the changing world in the adoption of the Pact for the Future”.

Recommendations and mitigation efforts should focus on encouraging those experiencing eco-anxiety to focus on joining collective action efforts (i.e. campaigns to clean ocean and beach environments (etc,) so that they feel they are doing something towards saving the planet. “This will help alleviate the feelings of ‘hopelessness’ which some experience from not knowing what to do about the environmental degradation. Furthermore, intergenerational collaboration is necessary for young people to voice their concerns and innovative ideas on the issue, while the older generation listens and further shares their lived wisdom. Ultimately, collective support (Ubuntu) is what is needed as part of the mitigation efforts,” concludes Dr Mulondo.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept