Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 October 2024 | Story Precious Shamase | Photo Supplied
Lebakeng Mokhele
Lebakeng Mokhele

The University of the Free State (UFS) celebrates Lebakeng Mokhele, a remarkable student nominated for the prestigious Allan Gray Student Achievers programme. This recognition highlights Mokhele’s exceptional academic journey, fuelled by dedication and a commitment to making a difference.

Mokhele is a beneficiary of the Centre for Global Change, exemplifying the positive impact of the centre.

Triumph over adversity

Despite facing significant challenges during his first year, Mokhele persevered and achieved remarkable success. Starting his academic journey on foot and enduring seven months without electricity, he demonstrated exceptional discipline and dedication to his studies.

Using a candle for light, Mokhele diligently pursued his academic goals, ultimately earning the prestigious title of Best First-Year in the Department of Computer Science and Informatics. His achievement was even more impressive considering the obstacles he overcame. Mokhele's story serves as a testament to the power of perseverance and the importance of maintaining focus in the face of adversity.

Mokhele’s story is one of perseverance.  Growing up, he wanted to become a medical doctor.  He credits his mother as his unwavering pillar of support. Additionally, he acknowledges Dr Amon Magwiro and Annemarie van Noordwyk for their guidance and mentorship.

A Well-Rounded Achiever

Currently pursuing an Honours in Business Management, Mokhele has a list of impressive accomplishments:

  • Top achiever awards across various departments
  • Best academic performer among all students in 2019
  • Golden Key International Honour Society member
  • Best performer in the Department of Business Management in 2020

Ambitious Goals and Aspiring Vision

He aspires to earn a PhD in Business Management while simultaneously establishing a thriving mixed farming enterprise. The Allan Gray programme offers him an opportunity to network and gain exposure to the financial industry – a developing passion sparked by the COVID-19 pandemic.

Leadership and Community Focus

His dedication extends beyond academics. He is actively involved in extracurricular activities, including organising community soccer tournaments.  He demonstrates strong leadership through his roles as:

  • President of Enactus UFS
  • Treasurer of Youth in Agriculture and Rural Development in Maluti-a-Phofung
  • His farming venture currently employs workers and plans for expansion are underway. Through his ‘bucks n bucks’ consultancy, he assists aspiring entrepreneurs.

Sharing his Wisdom

Mokhele emphasises the importance of applying knowledge and seeking information. He encourages fellow students:

  • Focus on discipline: It is the key to overcoming challenges.
  • Find your ‘why’: Drive yourself with a clear purpose.
  • Never give up: Success is possible even when facing setbacks.

Gratitude and Acknowledgement

Lebakeng expresses his deepest gratitude to his family, lecturers, the Centre for Global Change (including Prof Otomo and his team), and everyone who have supported him.

A Final Note

For those interested in learning more about Mokhele’s business venture, visit his website: www.bucksnbucks.co.za

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept