Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 October 2024 | Story Precious Shamase | Photo Supplied
Lebakeng Mokhele
Lebakeng Mokhele

The University of the Free State (UFS) celebrates Lebakeng Mokhele, a remarkable student nominated for the prestigious Allan Gray Student Achievers programme. This recognition highlights Mokhele’s exceptional academic journey, fuelled by dedication and a commitment to making a difference.

Mokhele is a beneficiary of the Centre for Global Change, exemplifying the positive impact of the centre.

Triumph over adversity

Despite facing significant challenges during his first year, Mokhele persevered and achieved remarkable success. Starting his academic journey on foot and enduring seven months without electricity, he demonstrated exceptional discipline and dedication to his studies.

Using a candle for light, Mokhele diligently pursued his academic goals, ultimately earning the prestigious title of Best First-Year in the Department of Computer Science and Informatics. His achievement was even more impressive considering the obstacles he overcame. Mokhele's story serves as a testament to the power of perseverance and the importance of maintaining focus in the face of adversity.

Mokhele’s story is one of perseverance.  Growing up, he wanted to become a medical doctor.  He credits his mother as his unwavering pillar of support. Additionally, he acknowledges Dr Amon Magwiro and Annemarie van Noordwyk for their guidance and mentorship.

A Well-Rounded Achiever

Currently pursuing an Honours in Business Management, Mokhele has a list of impressive accomplishments:

  • Top achiever awards across various departments
  • Best academic performer among all students in 2019
  • Golden Key International Honour Society member
  • Best performer in the Department of Business Management in 2020

Ambitious Goals and Aspiring Vision

He aspires to earn a PhD in Business Management while simultaneously establishing a thriving mixed farming enterprise. The Allan Gray programme offers him an opportunity to network and gain exposure to the financial industry – a developing passion sparked by the COVID-19 pandemic.

Leadership and Community Focus

His dedication extends beyond academics. He is actively involved in extracurricular activities, including organising community soccer tournaments.  He demonstrates strong leadership through his roles as:

  • President of Enactus UFS
  • Treasurer of Youth in Agriculture and Rural Development in Maluti-a-Phofung
  • His farming venture currently employs workers and plans for expansion are underway. Through his ‘bucks n bucks’ consultancy, he assists aspiring entrepreneurs.

Sharing his Wisdom

Mokhele emphasises the importance of applying knowledge and seeking information. He encourages fellow students:

  • Focus on discipline: It is the key to overcoming challenges.
  • Find your ‘why’: Drive yourself with a clear purpose.
  • Never give up: Success is possible even when facing setbacks.

Gratitude and Acknowledgement

Lebakeng expresses his deepest gratitude to his family, lecturers, the Centre for Global Change (including Prof Otomo and his team), and everyone who have supported him.

A Final Note

For those interested in learning more about Mokhele’s business venture, visit his website: www.bucksnbucks.co.za

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept