Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 October 2024 | Story Anthony Mthembu | Photo Supplied
Prof Tameshnie Deane
Prof Tameshnie Deane, Vice-Dean: Research, Postgraduate Studies and Internationalisation in the Faculty of Law at the University of the Free State (UFS).

The Faculty of Law at the University of the Free State (UFS) has appointed Prof Tameshnie Deane as Vice-Dean: Research, Postgraduate Studies and Internationalisation. Prof Deane officially assumed this role on 1 July 2024, following over two decades as a Professor and Head of the Criminal Law Unit at the University of South Africa (UNISA).

Prof Deane, who has approached this new position with great enthusiasm, describes it as a significant opportunity. ‘’This role allows me to influence the future of academic research and postgraduate education at UFS,’’ she said.

Support for postgraduate students

Prof Deane elaborated on her vision, saying, “My aim is to develop and implement strategies that elevate the quality and impact of research, foster innovation, and support postgraduate students in achieving their academic and professional goals.”

Among her top priorities is strengthening support for postgraduate students at the UFS. “I plan to introduce comprehensive mentorship programmes where experienced faculty members guide students through their academic and research journeys. We will offer training in key skills such as legal writing, research methodologies, and public speaking, while also prioritising initiatives to support their mental and emotional well-being,’’ she explained.

Prof Deane emphasised that creating a dynamic and supportive environment will contribute to academic excellence and personal growth for postgraduate students at the UFS.

Enhancing internationalisation and strategic collaborations

Prof Deane is also committed to advancing the internationalisation of the Faculty of Law.  “We aim to provide opportunities for international collaboration and exchange, which will broaden the scope and impact of our research and postgraduate programmes,’’ she said.

Improving research quality and output remains a core objective, with Prof Deane identifying this as central to her new role.

One of the initiatives Prof Deane is eager to lead is the development of strategic partnerships with industry and academic institutions. “Collaborations like these will provide invaluable resources for research projects,” she noted.

To foster these partnerships, Prof Deane plans to leverage technology to strengthen communication and collaboration, support relationship-building events, and promote interdisciplinary projects that encourage diverse perspectives and innovative solutions. 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept