Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 October 2024 | Story Anthony Mthembu | Photo Supplied
Prof Tameshnie Deane
Prof Tameshnie Deane, Vice-Dean: Research, Postgraduate Studies and Internationalisation in the Faculty of Law at the University of the Free State (UFS).

The Faculty of Law at the University of the Free State (UFS) has appointed Prof Tameshnie Deane as Vice-Dean: Research, Postgraduate Studies and Internationalisation. Prof Deane officially assumed this role on 1 July 2024, following over two decades as a Professor and Head of the Criminal Law Unit at the University of South Africa (UNISA).

Prof Deane, who has approached this new position with great enthusiasm, describes it as a significant opportunity. ‘’This role allows me to influence the future of academic research and postgraduate education at UFS,’’ she said.

Support for postgraduate students

Prof Deane elaborated on her vision, saying, “My aim is to develop and implement strategies that elevate the quality and impact of research, foster innovation, and support postgraduate students in achieving their academic and professional goals.”

Among her top priorities is strengthening support for postgraduate students at the UFS. “I plan to introduce comprehensive mentorship programmes where experienced faculty members guide students through their academic and research journeys. We will offer training in key skills such as legal writing, research methodologies, and public speaking, while also prioritising initiatives to support their mental and emotional well-being,’’ she explained.

Prof Deane emphasised that creating a dynamic and supportive environment will contribute to academic excellence and personal growth for postgraduate students at the UFS.

Enhancing internationalisation and strategic collaborations

Prof Deane is also committed to advancing the internationalisation of the Faculty of Law.  “We aim to provide opportunities for international collaboration and exchange, which will broaden the scope and impact of our research and postgraduate programmes,’’ she said.

Improving research quality and output remains a core objective, with Prof Deane identifying this as central to her new role.

One of the initiatives Prof Deane is eager to lead is the development of strategic partnerships with industry and academic institutions. “Collaborations like these will provide invaluable resources for research projects,” she noted.

To foster these partnerships, Prof Deane plans to leverage technology to strengthen communication and collaboration, support relationship-building events, and promote interdisciplinary projects that encourage diverse perspectives and innovative solutions. 

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept