Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 October 2024 | Story Anthony Mthembu | Photo Stephen Collett
Global Social Innovation Indaba
Panel discussion during the 2024 Global Social Innovation Indaba held at the University of the Free State, Bloemfontein Campus.

Insightful, thought-provoking and inspiring: These were some of the words used to describe the 2024 Global Social Innovation Indaba, which took place at the Centenary Complex on the University of the Free State’s (UFS’s) Bloemfontein Campus from 30 September to 2 October 2024.

The three-day conference was hosted by the global Social Innovation Exchange (SIX) in collaboration with the UFS, under the theme ‘People Powered Change’. The conference brought together leaders and innovators from South Africa and several other countries, including Louise Pulford, CEO of SIX; Markus Lux, Senior Vice-President at Robert Bosch Stiftung, and Desmond D’Sa from the South Durban Community Environment Alliance (SDCEA), among others.

In her opening address, Acting UFS Vice-Chancellor and Principal Prof Anthea Rhoda welcomed the guests and described the conference as an opportunity to “deliberate, debate, and dissect ideas around the all-important topic of harnessing people-powered change in order to build successful societies”.

Powering social change

As part of the conference guests engaged in a series of panel discussions and activities, and attended presentations on various topics.

D’Sa was one of the first speakers, delivering a keynote address titled ‘An activist guide to people-powered change’. He referred to moments throughout his career in which he has actively worked towards change in his community and beyond, and highlighted some of the work the SDCEA continues to do. Guests were also treated to a spoken word performance by Napo Masheane, Artistic Director at the Performing Arts Centre of the Free State (PACOFS).

Advocate Tembeka Ngcukaitobi touched on several points in his talk, such as what the law meant or means to indigenous people. He explored this by referring back to the colonialist era. Ngcukaitobi, who described law as the most ubiquitous and most stable concept that European settlers brought, indicated that it was brought in two faces: the face of justice, and the face of violence. Therefore, he said, “… the future of law that has been most enduring is the ability of the law to transform itself from violence to justice.”

Guests said they regarded the presentations and dialogues as insightful, and also highlighted their appreciation for being able to interact with the campus itself. This sentiment in large part stemmed from the attendees being split into smaller groups and taken to see different parts of the campus. They also got to see an exhibition exploring the role of art in social justice at the Department of Fine Arts.

Lessons from the conference

The last day featured a panel discussion titled ‘Challenging power dynamics and redefining global exchange’, which included an engagement session with the audience. Guests were able to reflect on the information they had acquired at the conference and challenged themselves to continue working towards change and innovation.

“What I learnt from these three days is that since we all want to do the right thing, we all know what the job that needs to be done is,” said Michael Ngigi, CEO of Thinkplace Africa. “As such, we need to be bold in going for that, and really push back on the status quo that is formed by the places we represent.”

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept