Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 October 2024 | Story André Damons | Photo Supplied
Prof-Maryke-Labuschagne
Prof Maryke Labuschagne is a Professor of Plant Breeding in the UFS Department of Plant Sciences.

A new research chair at the University of the Free State (UFS), led by Prof Maryke Labuschagne, a Professor of Plant Breeding in the UFS Department of Plant Sciences, hopes to increase food and nutritional security in South Africa through crops that have intrinsic high nutritional value.

The Breeding Climate-Resilient Vegetables and Grains research chair was established in partnership with the Agricultural Research Council (ARC) and the Department of Agriculture, Land Reform and Rural Development (DALRRD). It will be hosted within the Faculty of Natural and Agricultural Sciences (NAS) alongside the other ARC-DALLRD-UFS research chairs, namely Climate Change and Agriculture, Innovative Agro-processing for Climate-smart Food System, Agriculture Risk Financing and Sustainable Livestock Production. 

The aim of the new ARC-DALLRD-UFS research chair, explains Prof Labuschagne, who is also leading the National Research Foundation (NRF) SARChI Chair in Diseases and Quality of Field Crops, is to breed climate resilient crops with high levels of nutrients such as iron, zinc, provitamin A and essential amino acids, as well as disease resistance, in collaboration with the ARC.

Breeding of climate resilient crops

“We are all aware of the need for food security in South Africa. Climate change is already negatively impacting food production. With this research chair, in collaboration with the ARC, we hope to increase food security through crops that have intrinsic high nutritional value, for example, high levels of iron and zinc and provitamin A, of which there are high levels of deficiency in our population, and at the same time increase climate resilience (such as heat and drought tolerance) in these crops.

“We will be working on breeding climate-resilient, nutrient-rich and disease-resistant pigeon pea and cowpea cultivars; maize rich in provitamin A, iron and zinc; highly nutritious sweet and bitter sorghum; rust-resistant and good-quality wheat; high-yielding and nutritious indigenous vegetables such as amaranth and amadumbi; and research on potato, sweet potato and cassava for human and industrial uses,” says Prof Labuschagne.

The new chair will complement the research that is already being done for the SARChI chair, but with the ARC as partner. It will combine the expertise and resources of Plant Breeding at the UFS with that of the ARC-VIMP (Vegetable, Industrial and Medicinal Plants), ARC-GC (Grain Crops) and ARC-SC (Small Grains). The chair research will include orphan crops such as cowpea, pigeon pea and indigenous vegetables, as well as root and tuber crops such as potato and cassava, and cereals such as wheat, maize and sorghum.

Collaborative research

“The focus of this chair is on collaborative research and student training with the ARC, but the research area will still focus on the development of nutrient-rich and disease-resistant food-security crops. It will also have an additional focus of climate resilience, and the inclusion of orphan crops indigenous to Africa and South Africa.”

Prof Labuschagne says it is exciting that collaborative research can now be done with the unique expertise and resources (laboratory equipment, fields, greenhouses etc.) of several research institutes for the benefit of food and nutritional security in South Africa. Doing this research in a large team with lots of expertise in different areas will certainly yield more and better results with a larger impact on food security.

“This is a very exciting development in agricultural research now that we are part of a large team all working towards the same goal of improving food security, sharing expertise and resources and also doing collaborative training of MSc and PhD students who will become the scientists of tomorrow, taking this quest into the future.”

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation, says this chair is aligned to the UFS Vision 130 strategy, shaped by excellence and impact, sustainability and society. “This distinguished chair led by Prof Labuschagne recognises exceptional achievement and pre-eminence in the field to catalyse and ignite new talent and new knowledge. It marks an exciting opportunity to deepen our understanding of breeding climate-resilient vegetables and grains aligned to our expertise in agriculture.”

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept