Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 October 2024 | Story André Damons | Photo Supplied
Prof-Maryke-Labuschagne
Prof Maryke Labuschagne is a Professor of Plant Breeding in the UFS Department of Plant Sciences.

A new research chair at the University of the Free State (UFS), led by Prof Maryke Labuschagne, a Professor of Plant Breeding in the UFS Department of Plant Sciences, hopes to increase food and nutritional security in South Africa through crops that have intrinsic high nutritional value.

The Breeding Climate-Resilient Vegetables and Grains research chair was established in partnership with the Agricultural Research Council (ARC) and the Department of Agriculture, Land Reform and Rural Development (DALRRD). It will be hosted within the Faculty of Natural and Agricultural Sciences (NAS) alongside the other ARC-DALLRD-UFS research chairs, namely Climate Change and Agriculture, Innovative Agro-processing for Climate-smart Food System, Agriculture Risk Financing and Sustainable Livestock Production. 

The aim of the new ARC-DALLRD-UFS research chair, explains Prof Labuschagne, who is also leading the National Research Foundation (NRF) SARChI Chair in Diseases and Quality of Field Crops, is to breed climate resilient crops with high levels of nutrients such as iron, zinc, provitamin A and essential amino acids, as well as disease resistance, in collaboration with the ARC.

Breeding of climate resilient crops

“We are all aware of the need for food security in South Africa. Climate change is already negatively impacting food production. With this research chair, in collaboration with the ARC, we hope to increase food security through crops that have intrinsic high nutritional value, for example, high levels of iron and zinc and provitamin A, of which there are high levels of deficiency in our population, and at the same time increase climate resilience (such as heat and drought tolerance) in these crops.

“We will be working on breeding climate-resilient, nutrient-rich and disease-resistant pigeon pea and cowpea cultivars; maize rich in provitamin A, iron and zinc; highly nutritious sweet and bitter sorghum; rust-resistant and good-quality wheat; high-yielding and nutritious indigenous vegetables such as amaranth and amadumbi; and research on potato, sweet potato and cassava for human and industrial uses,” says Prof Labuschagne.

The new chair will complement the research that is already being done for the SARChI chair, but with the ARC as partner. It will combine the expertise and resources of Plant Breeding at the UFS with that of the ARC-VIMP (Vegetable, Industrial and Medicinal Plants), ARC-GC (Grain Crops) and ARC-SC (Small Grains). The chair research will include orphan crops such as cowpea, pigeon pea and indigenous vegetables, as well as root and tuber crops such as potato and cassava, and cereals such as wheat, maize and sorghum.

Collaborative research

“The focus of this chair is on collaborative research and student training with the ARC, but the research area will still focus on the development of nutrient-rich and disease-resistant food-security crops. It will also have an additional focus of climate resilience, and the inclusion of orphan crops indigenous to Africa and South Africa.”

Prof Labuschagne says it is exciting that collaborative research can now be done with the unique expertise and resources (laboratory equipment, fields, greenhouses etc.) of several research institutes for the benefit of food and nutritional security in South Africa. Doing this research in a large team with lots of expertise in different areas will certainly yield more and better results with a larger impact on food security.

“This is a very exciting development in agricultural research now that we are part of a large team all working towards the same goal of improving food security, sharing expertise and resources and also doing collaborative training of MSc and PhD students who will become the scientists of tomorrow, taking this quest into the future.”

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation, says this chair is aligned to the UFS Vision 130 strategy, shaped by excellence and impact, sustainability and society. “This distinguished chair led by Prof Labuschagne recognises exceptional achievement and pre-eminence in the field to catalyse and ignite new talent and new knowledge. It marks an exciting opportunity to deepen our understanding of breeding climate-resilient vegetables and grains aligned to our expertise in agriculture.”

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept