Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 October 2024 | Story Jacky Tshokwe | Photo Supplied
RAiN Automate Innovate Challenge 2024
The University of the Free State accounting students rise to the challenge in the RAiN Automate to Innovate Challenge.

The School of Accountancy at the University of the Free State (UFS) is leading a forward-thinking initiative by introducing the RAiN Automate to Innovate Challenge in 2024. This marks the first time that the UFS has run this challenge, and it is already making waves in the accounting education landscape. As one the few Accountancy department in South Africa to host such an event, the UFS is paving the way for technological integration in the academic world, setting the stage for future inter-university competitions.

The RAiN Automate to Innovate Challenge invited second-year BAcc students enrolled in the EIDE2724 module to participate in groups of three to four. Their task was to identify and solve a real-world problem related to either students or business by developing a robotic process automation (RPA) bot using Power Automate.

The challenge followed an exploratory learning approach, empowering students to dive into the world of automation with minimal formal lecturing. This approach develops students’ creativity and problem-solving skills. The students worked hard to master Power Automate and applied their knowledge to build automation bots that successfully solved business and student life problems.

Presentations and the final showdown

After presenting their bots on 10, 11, and 14 October, the top six groups were announced in class, eagerly awaiting the grand finale. The final round took place on 18 October from 12:00 to 14:00, where the top six groups competed head-to-head.

A distinguished panel of judges, consisting of three judges from RAiN Auditors and three from the UFS, evaluated the bots based on creativity, functionality, and potential impact. By the end of the event, the winning groups were announced, and the following prizes were awarded:

  • First place: R1 500 each
  • Second place: R1 200 each
  • Third place: R1 000 each

The prizes were generously sponsored by RAiN Auditors, showcasing their commitment to fostering innovation in education.

Looking ahead

As the first South African university to run this type of challenge, the UFS aims to inspire other institutions across the country to follow suit. The School of Accountancy is eager to expand this competition, with the hope of challenging other universities in 2025 and beyond, creating a platform for students to showcase their technical skills and business acumen in the rapidly evolving field of accounting.

Stay tuned for the impact and future growth of the RAiN Automate to Innovate Challenge, where we continue to push boundaries and prepare the next generation of accountants to excel in a digital world.

For more insight into the competition, check out the video recap [here](insert Vimeo link). Be sure to explore the image gallery, showcasing the incredible work and teamwork of our students.

Check out the video here for more details.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept