Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 October 2024 | Story Jacky Tshokwe | Photo Supplied
RAiN Automate Innovate Challenge 2024
The University of the Free State accounting students rise to the challenge in the RAiN Automate to Innovate Challenge.

The School of Accountancy at the University of the Free State (UFS) is leading a forward-thinking initiative by introducing the RAiN Automate to Innovate Challenge in 2024. This marks the first time that the UFS has run this challenge, and it is already making waves in the accounting education landscape. As one the few Accountancy department in South Africa to host such an event, the UFS is paving the way for technological integration in the academic world, setting the stage for future inter-university competitions.

The RAiN Automate to Innovate Challenge invited second-year BAcc students enrolled in the EIDE2724 module to participate in groups of three to four. Their task was to identify and solve a real-world problem related to either students or business by developing a robotic process automation (RPA) bot using Power Automate.

The challenge followed an exploratory learning approach, empowering students to dive into the world of automation with minimal formal lecturing. This approach develops students’ creativity and problem-solving skills. The students worked hard to master Power Automate and applied their knowledge to build automation bots that successfully solved business and student life problems.

Presentations and the final showdown

After presenting their bots on 10, 11, and 14 October, the top six groups were announced in class, eagerly awaiting the grand finale. The final round took place on 18 October from 12:00 to 14:00, where the top six groups competed head-to-head.

A distinguished panel of judges, consisting of three judges from RAiN Auditors and three from the UFS, evaluated the bots based on creativity, functionality, and potential impact. By the end of the event, the winning groups were announced, and the following prizes were awarded:

  • First place: R1 500 each
  • Second place: R1 200 each
  • Third place: R1 000 each

The prizes were generously sponsored by RAiN Auditors, showcasing their commitment to fostering innovation in education.

Looking ahead

As the first South African university to run this type of challenge, the UFS aims to inspire other institutions across the country to follow suit. The School of Accountancy is eager to expand this competition, with the hope of challenging other universities in 2025 and beyond, creating a platform for students to showcase their technical skills and business acumen in the rapidly evolving field of accounting.

Stay tuned for the impact and future growth of the RAiN Automate to Innovate Challenge, where we continue to push boundaries and prepare the next generation of accountants to excel in a digital world.

For more insight into the competition, check out the video recap [here](insert Vimeo link). Be sure to explore the image gallery, showcasing the incredible work and teamwork of our students.

Check out the video here for more details.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept