Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 September 2024 | Story Anthony Mthembu | Photo Anthony Mthembu
GEADO donates sanitary towels to community development initiative 2024
From left to right: Morwesi Malebo, Founder of ‘Give a Flower for a Change’, and Geraldine Lengau, Senior Officer in the Unit for Institutional Change and Social Justice at UFS.

As part of its ongoing Dignity Kit Awareness Campaign, launched in 2023, the Gender Equality and Anti-Discrimination Office (GEADO) at the University of the Free State (UFS) recently contributed to a community development initiative titled ‘Give a Flower for a Change.’ A batch of sanitary towels was recently officially handed over at the UFS Bloemfontein Campus, facilitated by Geraldine Lengau, Senior Officer in the Unit for Institutional Change and Social Justice.

According to Lengau, GEADO has made several similar donations on campus, benefitting initiatives such as the ‘No Student Hungry’ (NSH) programme, staff members through the Office of Organisational Development and Employee Wellness, as well as student walk-ins, among others. This latest donation extends the reach of the Dignity Kit Campaign beyond the campus community. ‘’This forms part of our mandate to raise awareness, particularly in uplifting the dignity of women. It is essential for the university to provide these dignity kits, as it demonstrates its commitment to addressing gender-based violence, supporting survivors, and promoting awareness,’’ said Lengau. She further emphasised that such donations foster a broader effort by the university to create a culture of respect, empathy, and support for surrounding communities, thus advancing social justice as articulated in the UFS’s Vision 130 strategic plan. 

Supporting Give a flower for a Change

The sanitary towels were handed over to Morwesi Malebo, founder of ‘Give a Flower for a Change’. According to Malebo, the initiative works closely with Unity Primary School in Bloemfontein, aiming to uplift the lives of children, particularly those from previously disadvantaged households. ‘’I have heard of instances at the school where some learners resorted to using cloth during their periods because they lacked access to sanitary towels,” Malebo shared. The donation will now help provide the necessary supplies to these children.

The initiative relies heavily on donations, accepting sanitary towels, school shoes, toiletries, and other essential items. Malebo stressed the significant impact of these contributions, noting that the learners are ‘’incredibly grateful, and the positive change in their lives is visible.” Without such resources, learners often feel self-conscious, which affects their performance at school. Collaborations with partners like GEADO, Malebo added, are crucial to the development of communities like hers. Consequently, she hopes to expand the initiative to high schools across Bloemfontein and maintain a strong partnership with GEADO.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept