Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 September 2024 | Story Aimée Barlow | Photo Supplied
Louzanne Coetzee - 2024
Louzanne Coetzee, who made history by clinching South Africa’s second medal at the Paralympics, earning a bronze in the T11 1 500 m women’s final with a personal best time, received a warm reception when she recently returned home.

The celebrated Paralympic bronze medallist Louzanne Coetzee returned home to a warm welcome at the Bram Fischer International Airport on 10 September 2024.

Family, friends, colleagues, Arista students, and media gathered to celebrate her remarkable achievement and show their support.

Coetzee – KovsieSport Coordinator of Parasport at the University of the Free State (UFS) – made history by clinching South Africa’s second medal at the Paralympics, earning a bronze in the T11 1 500 m women’s final with a personal best time. Her dedication and hard work have not only brought her personal glory but have also inspired many in her community.

Among those present to welcome her was Jerry Laka, Director of KovsieSport, who expressed his pride in Coetzee’s accomplishments.

"We as KovsieSport are so proud of our colleague Coetzee. It is amazing to see a product of KovsieSport achieving greatness on the world stage. She is truly an inspiration to us all," said Laka.

“I am so glad to be back, and to have Laka and my colleagues here. It means the world to me. Having Laka here shows his commitment to my career and ParaSport and his staff in general,” shared Coetzee, her gratitude evident.

She further expressed her appreciation for the support she received, stating, “I don’t have the words to describe how thankful I am for the support from the UFS community.”

Coetzee’s return is a proud moment for South Africa and the University of the Free State (UFS) community. Welcome home, Louzanne! Your achievements have made us all proud!

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept