Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 September 2024 | Story André Damons | Photo André Damons
Prof Martin Nyaga – Associate Professor and Head of the University of the Free State (UFS) Next Generation Sequencing Unit (UFS-NGS) – recently obtained a B3 rating from the National Research Foundation (NRF).

Prof Martin Nyaga – Associate Professor and Head of the University of the Free State (UFS) Next Generation Sequencing (NGS) Unit – recently obtained an NRF B3 rating from the National Research Foundation (NRF), which is not only testament to his research prowess, but also demonstrates his unwavering commitment to academic excellence.

Prof Nyaga made a significant improvement from his previous NRF Y2 rating (categorised as a promising young researcher). His new B3 rating is assigned to a researcher who enjoys considerable international recognition by their peers for the high quality and impact of their recent research output.

“It is an incredibly thrilling experience to attain the esteemed NRF rating in the B category. Accomplishing the NRF B3 rating satiates an enormous sense of being appreciated and acknowledged individually and as an academic at the UFS. This acknowledgement emphasises the high quality of the research that I do and provides immense motivation to continue mentoring upcoming and emerging researchers in the field of molecular virology,” says Prof Nyaga.

Research output

According to him, this recognition serves as motivation to become an NRF A-rated researcher in the next rating cycle. “I am optimistic that I can meet the minimum threshold to be among the highly esteemed NRF A-rated researchers who are internationally recognised as leading scholars in their field of specialisation for their high-quality research and wide impact.”

Prof Nyaga, who is affiliated to the Division of Virology within the Faculty of Health Sciences, has an exponential trajectory in research output dissemination in reputable international conference presentations and scientific/medical journals such as Nature, Nature Medicine, Nature Communications, and Science, among other quantile 1 journals, with significant citations (3 337 times, h-index 20 and i-10 index 32). He has demonstrated unwavering commitment to academic excellence and has made significant strides within his niche research area of whole genome sequencing and metagenomics of enteric and respiratory viruses. He has not only successfully collaborated with eminent researchers both within and outside the university and globally, but his interdisciplinary research approach has led to groundbreaking studies that address complex issues from multiple perspectives.

Prof Nyaga has applied his expertise to address real-world challenges. One notable example is his involvement in community-based projects and public outreach and education. He has organised and participated in various workshops, seminars, and public lectures aimed at disseminating knowledge and raising awareness about important issues in the field of enteric and respiratory pathogen genomics. His efforts have strengthened the ties between the UFS and the broader community, enhancing the impact and visibility of the institution.

Support by the UFS

“Achieving this rating not only required self-driven research-enhancement discipline, networking, and implementation of novel concepts to enhance my NRF research rating from Y to B, but I also received substantial support from my affiliate institution, especially the Faculty of Health Sciences and the Directorate of Research and Development (DRD).”

“The UFS has put in place amazing policies and career development strategies to ensure that focused Y-rated researchers have the opportunity to become established researchers within one rating cycle of five years – a reality that I immensely thank God for enabling me to attain,” says Prof Nyaga.

These programmes include, among others, the Transforming the Professoriate Mentoring Programme, where he was part of the first cohort of members recruited in 2019.

Prof Nyaga, who has supervised/co-supervised seven PhDs and more than 20 master’s and honours postgraduates to graduation, also serves in various leadership roles, including Chairman for the Africa Centres for Disease Control and Prevention (ACDC) Pathogen Genomics Initiative (PGI), Vaccine-Preventable Diseases (VPD) Focus Group (FG), and Director of the WHO Collaborating Centre for VPD Surveillance and Pathogen Genomics. His ability to instigate and inspire as the team lead and his strategic vision for the UFS-NGS Unit are key factors in the successful execution of numerous initiatives. He is a strong advocate for diversity, equity, and inclusion, and his efforts have created a more inclusive and welcoming environment for his peers and students from diverse backgrounds.

Future

He plans to undertake future research that has an impact on the national health systems and to establish himself as an international leader in his niche research area. “I hope to create a vibrant association between research and national development goals and to have a transformative effect on my area of research in a way that can influence policy by addressing national and international challenges within global knowledge innovation,” says Prof Nyaga.

His continuing research involves the use of next generation sequencing to decipher the viral component of the respiratory and enteric milieu and accentuate the critical need to define the complete spectrum of disease-causing viruses. Several previously known and unknown viruses have been detected, including viruses with previously unrecognised tropism.

Additionally, whole genome sequencing of important respiratory viruses, such as the respiratory syncytial virus (RSV) (as part of the respiratory niche) and rotavirus (as part of the enteric niche), is being performed simultaneously for different countries, including South Africa, Zambia, Rwanda, Kenya, Cameroon, Mozambique, and Malawi, to enhance the genomic surveillance of specific respiratory and enteric viruses of interest.

The overall goal is to identify novel pathogens responsible for human viral diseases and to create a flexible and highly effective system for the rapid identification and analysis of emerging or re-emerging agents. This will serve four purposes: (i) improve preparedness for outbreaks, (ii) characterise new viruses, (iii) identify additional new pathogenic viruses, and (iv) provide new understanding of the human respiratory and enteric virome.

“Viruses that appear to be relevant will be prioritised to elucidate specific targets for rapid diagnostics using panels developed from the antigenic sites of the generated genomes, and immune mechanisms used to develop antiviral interventions such as drugs and vaccines,” explains Prof Nyaga.

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation, commented: “The rating bears testimony to the incredibly important and impactful work that Prof Nyaga is undertaking. The solid international footprint of his publications and their citations also confirm the relevance and currency of his cutting-edge work. The UFS is extremely proud of this signal achievement, and we wish him well with his work in the years ahead.”

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept