Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 September 2024 | Story André Damons | Photo André Damons
Prof Martin Nyaga – Associate Professor and Head of the University of the Free State (UFS) Next Generation Sequencing Unit (UFS-NGS) – recently obtained a B3 rating from the National Research Foundation (NRF).

Prof Martin Nyaga – Associate Professor and Head of the University of the Free State (UFS) Next Generation Sequencing (NGS) Unit – recently obtained an NRF B3 rating from the National Research Foundation (NRF), which is not only testament to his research prowess, but also demonstrates his unwavering commitment to academic excellence.

Prof Nyaga made a significant improvement from his previous NRF Y2 rating (categorised as a promising young researcher). His new B3 rating is assigned to a researcher who enjoys considerable international recognition by their peers for the high quality and impact of their recent research output.

“It is an incredibly thrilling experience to attain the esteemed NRF rating in the B category. Accomplishing the NRF B3 rating satiates an enormous sense of being appreciated and acknowledged individually and as an academic at the UFS. This acknowledgement emphasises the high quality of the research that I do and provides immense motivation to continue mentoring upcoming and emerging researchers in the field of molecular virology,” says Prof Nyaga.

Research output

According to him, this recognition serves as motivation to become an NRF A-rated researcher in the next rating cycle. “I am optimistic that I can meet the minimum threshold to be among the highly esteemed NRF A-rated researchers who are internationally recognised as leading scholars in their field of specialisation for their high-quality research and wide impact.”

Prof Nyaga, who is affiliated to the Division of Virology within the Faculty of Health Sciences, has an exponential trajectory in research output dissemination in reputable international conference presentations and scientific/medical journals such as Nature, Nature Medicine, Nature Communications, and Science, among other quantile 1 journals, with significant citations (3 337 times, h-index 20 and i-10 index 32). He has demonstrated unwavering commitment to academic excellence and has made significant strides within his niche research area of whole genome sequencing and metagenomics of enteric and respiratory viruses. He has not only successfully collaborated with eminent researchers both within and outside the university and globally, but his interdisciplinary research approach has led to groundbreaking studies that address complex issues from multiple perspectives.

Prof Nyaga has applied his expertise to address real-world challenges. One notable example is his involvement in community-based projects and public outreach and education. He has organised and participated in various workshops, seminars, and public lectures aimed at disseminating knowledge and raising awareness about important issues in the field of enteric and respiratory pathogen genomics. His efforts have strengthened the ties between the UFS and the broader community, enhancing the impact and visibility of the institution.

Support by the UFS

“Achieving this rating not only required self-driven research-enhancement discipline, networking, and implementation of novel concepts to enhance my NRF research rating from Y to B, but I also received substantial support from my affiliate institution, especially the Faculty of Health Sciences and the Directorate of Research and Development (DRD).”

“The UFS has put in place amazing policies and career development strategies to ensure that focused Y-rated researchers have the opportunity to become established researchers within one rating cycle of five years – a reality that I immensely thank God for enabling me to attain,” says Prof Nyaga.

These programmes include, among others, the Transforming the Professoriate Mentoring Programme, where he was part of the first cohort of members recruited in 2019.

Prof Nyaga, who has supervised/co-supervised seven PhDs and more than 20 master’s and honours postgraduates to graduation, also serves in various leadership roles, including Chairman for the Africa Centres for Disease Control and Prevention (ACDC) Pathogen Genomics Initiative (PGI), Vaccine-Preventable Diseases (VPD) Focus Group (FG), and Director of the WHO Collaborating Centre for VPD Surveillance and Pathogen Genomics. His ability to instigate and inspire as the team lead and his strategic vision for the UFS-NGS Unit are key factors in the successful execution of numerous initiatives. He is a strong advocate for diversity, equity, and inclusion, and his efforts have created a more inclusive and welcoming environment for his peers and students from diverse backgrounds.

Future

He plans to undertake future research that has an impact on the national health systems and to establish himself as an international leader in his niche research area. “I hope to create a vibrant association between research and national development goals and to have a transformative effect on my area of research in a way that can influence policy by addressing national and international challenges within global knowledge innovation,” says Prof Nyaga.

His continuing research involves the use of next generation sequencing to decipher the viral component of the respiratory and enteric milieu and accentuate the critical need to define the complete spectrum of disease-causing viruses. Several previously known and unknown viruses have been detected, including viruses with previously unrecognised tropism.

Additionally, whole genome sequencing of important respiratory viruses, such as the respiratory syncytial virus (RSV) (as part of the respiratory niche) and rotavirus (as part of the enteric niche), is being performed simultaneously for different countries, including South Africa, Zambia, Rwanda, Kenya, Cameroon, Mozambique, and Malawi, to enhance the genomic surveillance of specific respiratory and enteric viruses of interest.

The overall goal is to identify novel pathogens responsible for human viral diseases and to create a flexible and highly effective system for the rapid identification and analysis of emerging or re-emerging agents. This will serve four purposes: (i) improve preparedness for outbreaks, (ii) characterise new viruses, (iii) identify additional new pathogenic viruses, and (iv) provide new understanding of the human respiratory and enteric virome.

“Viruses that appear to be relevant will be prioritised to elucidate specific targets for rapid diagnostics using panels developed from the antigenic sites of the generated genomes, and immune mechanisms used to develop antiviral interventions such as drugs and vaccines,” explains Prof Nyaga.

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation, commented: “The rating bears testimony to the incredibly important and impactful work that Prof Nyaga is undertaking. The solid international footprint of his publications and their citations also confirm the relevance and currency of his cutting-edge work. The UFS is extremely proud of this signal achievement, and we wish him well with his work in the years ahead.”

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept