Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 September 2024 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Jeremy Smith
Prof Jeremy Smith, Adjunct Professor in the Department of Architecture, recently delivered his inaugural lecture on the UFS Bloemfontein Campus.

A few days after the annual Sophia Gray lecture, the Department of Architecture at the University of the Free State (UFS) hosted the inaugural lecture of Prof Jeremy Smith.

Prof Smith, the Design Director of Irving Smith Architects in New Zealand and an Adjunct Professor in the UFS Department of Architecture, is known for his innovative approach to architecture that emphasises sustainability and the relationship between buildings and their natural surroundings.

Earlier this year, he partnered with RTA Studio – an architectural firm based in Auckland, New Zealand – and won the prestigious Dubai International Best Practices Award for Sustainable Development in the category of the Most Beautiful, Innovative and Iconic Building with the entry: The ‘Scion Innovation Hub, Te Whare Nui O Tuteata.

A changing climate

Themed Being Finished is Finished, the lecture attracted a diverse audience of architects, industry stakeholders, academics, students, and the general public. Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation, welcomed Prof Smith and the attendees. He congratulated Prof Smith on this milestone, highlighting that a professor’s work often represents the beginning of much unfinished business. He noted that the UFS is proud to host such lectures, which celebrate and acknowledge excellence in research and practice.

Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences, introduced Prof Smith, praising his impressive career and the numerous national and international awards he has received.

Prof Smith’s lecture focused on the evolving relationship between architecture and the landscape, particularly in New Zealand, where only a quarter of the original forests remain. “We know our climate is changing. In New Zealand we massively made landscape; landscape is everything. Modernism has asked us to use the lawnmower,” he remarked.

He believes in the importance of architecture that adapts and evolves within its natural surroundings, rather than imposing new landscapes. He introduced the concept of ‘soft architecture’, which involves designing buildings that fit into the changing landscape. This approach allows for a sustainable relationship between architecture and nature, ensuring that buildings enhance rather than dominate their environment.

He illustrated this philosophy with a project, the ‘Bach with Two Roofs’ house, which was damaged by a cyclone in 2014. The storm altered the surrounding landscape, and rather than simply repairing the house, Prof Smith redesigned it in a flexible and adaptive manner that might accommodate environmental change. This project demonstrated how buildings can be refurnished to adapt to a shift in the landscape, ultimately coexisting with and responding to the natural world.

“From life in the forest, the landscape shifted – the sun was hotter, the wind was stronger. Our building has lost its fit to the landscape. Refurnishing it, we need to acknowledge that this time a new forest will grow. It will be a stronger forest – it will be indigenous and will grow in relation to the building. In this shifting landscape, it’s not the landscape that needs to be refurnished. It is the building.”

Doing more with less

Prof Smith also discussed two award-winning projects: the ‘Te Whare Nui O Tuteata’ project and the ‘Feather House’. Both projects are examples of his commitment to sustainability and adaptive design – doing more with less.

The ‘Te Whare Nui O Tuteata’ project, part of the New Zealand government’s SCION Timber Research Institute, uses a diagrid timber structure that reduces material usage and allows the building to integrate seamlessly with its forest surroundings. The building was designed with a neutral carbon count, and the timber used was locally sourced, reflecting the natural landscape.

Prof Smith described the building as an educational invitation to visitors to ‘walk in our forest’ and learn new and sustainable ways of resourcing and building with timber. “The building behaves like a forest – the closer you get the more is revealed. Light filtering through its timber framework is also much like sunlight through a forest canopy – enhancing the building’s connection to its surroundings.” 

In discussing the Feather House, Prof Smith highlighted the importance of designing spaces that can evolve with their inhabitants. “Design for the ‘there and then’ rather than for the ‘here and now’,” he said. “One cannot design a room for every occasion, but you can provide an invitation.” He advocates for creating architecture that anticipates future changes and adapts to evolving environments, ensuring that buildings remain relevant and functional over time. His design philosophy underscores connection rather than division of spaces and doing less rather than more to create adaptable and sustainable living environments. “Do not design the space based on whose shoes are in the shoe rack,” he commented. 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept