Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 September 2024 | Story Lunga Luthuli | Photo Supplied
2024 - 2025 CSRC elections
The UFS’s recent pioneering of live election results during the 2024/2025 CSRC elections drove unprecedented student engagement.

The University of the Free State (UFS) has proven its commitment to innovation and student engagement with the recent 2024/2025 Campus Student Representative Council (CSRC) elections, which were held online and featured real-time results projection across all three campuses. The elections, held from 20 to 22 August 2024, marked a significant milestone for the institution, setting a precedent in the national higher education landscape.

Dr Grey Magaiza, Chairperson of the UFS Elections Logistics Committee (ELC), provided insight into the planning process that went into making the elections a success: “Planning for an institutional CSRC election is a very demanding process,” he explained. “Multiple stakeholders have to be appraised of the project, as it has multiple implications for the institution. The voting is the last phase in a long list of actions that a capable team must support.”

One of the most notable aspects of this year’s elections was the introduction of real-time results, a first for any institution in South Africa. Despite the challenges that came with being pioneers in this area, the ELC managed to overcome them through rigorous scenario planning and extensive negotiations. “This is a huge milestone, but it did not come without its own challenges,” Dr Magaiza said. “We had to engage in multiple negotiations with numerous process owners. The debates that ensued only sharpened our ability to observe potential blind spots.”

Students embrace live voting

The transition from traditional online voting to a system with live results was met with enthusiasm by the student body. “Students have always been for online elections. The majority of students we talked to loved the live results format,” Dr Magaiza said. The decision to share the live results link with the entire student body, despite initial requests for it to be limited to party agents, was particularly well-received, further enhancing transparency and engagement.

Security and accuracy were also top priorities for the ELC, with advanced IT processes in place to ensure a seamless voting experience. Each student was provided with a unique one-time PIN (OTP) sent to both their UFS email and cellphone, and the system was designed to cater to the specific needs of each campus.

The live results projection, which updated every five minutes, not only drove massive voter turnout across all campuses but also fostered a more dynamic and engaging election atmosphere. “The turnout was massive across all three campuses, surpassing the previous year’s figures,” Dr Magaiza said.

Reflecting on the success of the elections, Dr Magaiza emphasised the importance of collaboration and preparation. He also expressed confidence that the UFS model could serve as an example for other institutions in South Africa. “Live results enhance transparency and acceptance of the election results. As UFS, we have not had a single objection with regards to the first-past-the-post election results,” he concluded.

The 2024/2025 CSRC Elections at the UFS have not only set a new standard within the university, but have also highlighted the potential for innovation in student governance across the country.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept