Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 September 2024 | Story Lunga Luthuli | Photo Supplied
2024 - 2025 CSRC elections
The UFS’s recent pioneering of live election results during the 2024/2025 CSRC elections drove unprecedented student engagement.

The University of the Free State (UFS) has proven its commitment to innovation and student engagement with the recent 2024/2025 Campus Student Representative Council (CSRC) elections, which were held online and featured real-time results projection across all three campuses. The elections, held from 20 to 22 August 2024, marked a significant milestone for the institution, setting a precedent in the national higher education landscape.

Dr Grey Magaiza, Chairperson of the UFS Elections Logistics Committee (ELC), provided insight into the planning process that went into making the elections a success: “Planning for an institutional CSRC election is a very demanding process,” he explained. “Multiple stakeholders have to be appraised of the project, as it has multiple implications for the institution. The voting is the last phase in a long list of actions that a capable team must support.”

One of the most notable aspects of this year’s elections was the introduction of real-time results, a first for any institution in South Africa. Despite the challenges that came with being pioneers in this area, the ELC managed to overcome them through rigorous scenario planning and extensive negotiations. “This is a huge milestone, but it did not come without its own challenges,” Dr Magaiza said. “We had to engage in multiple negotiations with numerous process owners. The debates that ensued only sharpened our ability to observe potential blind spots.”

Students embrace live voting

The transition from traditional online voting to a system with live results was met with enthusiasm by the student body. “Students have always been for online elections. The majority of students we talked to loved the live results format,” Dr Magaiza said. The decision to share the live results link with the entire student body, despite initial requests for it to be limited to party agents, was particularly well-received, further enhancing transparency and engagement.

Security and accuracy were also top priorities for the ELC, with advanced IT processes in place to ensure a seamless voting experience. Each student was provided with a unique one-time PIN (OTP) sent to both their UFS email and cellphone, and the system was designed to cater to the specific needs of each campus.

The live results projection, which updated every five minutes, not only drove massive voter turnout across all campuses but also fostered a more dynamic and engaging election atmosphere. “The turnout was massive across all three campuses, surpassing the previous year’s figures,” Dr Magaiza said.

Reflecting on the success of the elections, Dr Magaiza emphasised the importance of collaboration and preparation. He also expressed confidence that the UFS model could serve as an example for other institutions in South Africa. “Live results enhance transparency and acceptance of the election results. As UFS, we have not had a single objection with regards to the first-past-the-post election results,” he concluded.

The 2024/2025 CSRC Elections at the UFS have not only set a new standard within the university, but have also highlighted the potential for innovation in student governance across the country.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept