Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 September 2024 | Story Precious Shamase | Photo Ian Van Straaten
Vincent Mahapa 2024
The Campus Principal, Prof Prince Ngobeni and the Dux award Winner Vincent Mahapa.

The University of the Free State Qwaqwa Campus recently celebrated academic and holistic excellence at its annual Student Excellence Awards. The event honoured high-achieving students from various disciplines, as well as those who have made significant contributions to the campus community.

The air was electric with anticipation as the campus community gathered to honour its brightest stars. The annual Student Excellence Awards showcased the exceptional talents and achievements of students across academic and extracurricular realms. This event took place in the iconic Mandela Hall.

Vincent Mahapa, a dedicated 21-year-old from Bronkhorstspruit east of Pretoria, was recognised for his exceptional academic achievements by being awarded the prestigious Dux prize at the event.

Mahapa is on the verge of completing his Bachelor of Administration and Management degree in the Faculty of Economic and Management Sciences (EMS) and has consistently demonstrated academic excellence. In his second year, he achieved an impressive average of 82%, securing a remarkable seven distinctions in 2023. These outstanding results were further acknowledged through his induction into the prestigious Golden Key International Honour Society, Class of 2023.

Driven by a passion for public administration and management, Mahapa has a strong interest in black empowerment, organisational leadership, and community development. He aspires to leverage his skills and knowledge to drive positive change within these fields.

Overcoming challenges, achieving success

Mahapa's journey to academic excellence was not without its hurdles. He openly acknowledges the challenges he has faced in effectively managing time, balancing academic and personal life, staying motivated, and overcoming social anxiety. However, his determination to succeed shone through as he strategically tackled these obstacles.

Commenting on this laudable recognition, he said, “By creating a well-balanced schedule, setting realistic goals, and seeking support from peers and lecturers, I developed effective coping mechanisms.” He emphasised the importance of creating a study plan and adhering to it, along with techniques such as breaking down complex topics into manageable sections and employing the Pomodoro technique to optimise study sessions.

Words of wisdom for fellow students

As a Dux awardee, Mahapa offered valuable advice to his fellow students who aspire for academic excellence. He encourages them to:

  • seek help and support when needed;
  • remain consistent and persistent in their efforts;
  • set clear goals and work diligently towards achieving them;
  • develop strong organisational skills and manage time effectively; and
  • surround themselves with positive influences that will motivate and support their endeavours.
  • Finding balance for academic and personal well-being

Being an introverted individual, Mahapa acknowledges the importance of striking a healthy balance between academic commitments and personal life.  He achieves this by meticulously planning his schedule, allocating specific time slots for studying, relaxation, and personal activities. Setting realistic goals and further prioritising tasks allows him to manage his time effectively.

Additionally, he stresses the importance of creating a designated study space that is comfortable, organised, and minimises distractions, thus boosting productivity. Distinguishing the importance of self-care, Mahapa highlights activities that bring him joy and relaxation. He does not hesitate to seek support from loved ones and lecturers when needed, and regularly reviews and adjusts his approach to ensure a healthy balance that meets his individual needs.

The university congratulates him on this well-deserved achievement and commends him for his commitment to using his knowledge and skills to make a positive impact on society.

And a big congratulations to all the winners. Indeed, we are inspiring excellence!

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept