Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 April 2025 | Story Onthatile Tikoe | Photo Onthatile Tikoe
Zane Dippenaar
Dr Zané Dippenaar (30) is the youngest PhD graduate in this year’s Business Management class from the University of the Free State.

Zané Dippenaar, a 30-year-old marketing and project manager at a Cape Town-based solar energy company, is the youngest person in this year’s graduating class to earn a Doctor of Philosophy (PhD) in Business Management degree from the University of the Free State this year.  

But despite this achievement, the newly minted Dr Dippenaar says she would not have predicted she would study her way to PhD level. 

“I wasn’t particularly academically driven before tertiary education, but I knew from early on that I wanted to either become a teacher or pursue something in the world of business,” she says. Her natural ability and her family’s encouragement led her to explore entrepreneurship and marketing, which she soon developed a passion for.

 

Overcoming challenges and finding support

Dr Dippenaar’s academic journey was marked by significant challenges, including balancing work and study commitments. However, she credits her supervisors and family for helping her stay motivated. 

Her dissertation, titled ‘Advertising and Brand Loyalty in the South African Solar Industry’, showcases her expertise in marketing and branding.

“There were moments filled with doubt, setbacks, and exhaustion, but I was fortunate to have a strong support system who continuously encouraged me and reminded me of what I was working towards,” she says.

 

Achieving a personal milestone

Dr Dippenaar’s PhD achievement is not only an academic milestone but also a personal triumph. She had set a goal of completing her PhD before turning 30 and achieved it just weeks before her birthday. “That was a personal milestone I had set for myself, and achieving it was incredibly fulfilling,” she says. 

She plans to apply the knowledge she gained in the industry and potentially return to academia. She advises younger students to trust their instincts and start their academic journey without waiting for perfection.

“Don’t wait until you’re ‘ready’ – you never will be. Just start. Surround yourself with people who believe in you, ask for help when you need it, and take it one chapter at a time,” she advises.

 

A role model for others

Dr Dippenaar hopes to inspire others, particularly young women, by showing that success in academia doesn’t follow a one-size-fits-all formula. “I hope my story demonstrates that with the right support, determination, and a willingness to carve your own path, anything is possible.”

The University of the Free State is proud to have played a role in Dippenaar’s academic journey, fostering her growth and expertise in business management. Her achievement is a testament to the institution’s commitment to academic excellence and innovation.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept