Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 April 2025 | Story Onthatile Tikoe | Photo Onthatile Tikoe
Zane Dippenaar
Dr Zané Dippenaar (30) is the youngest PhD graduate in this year’s Business Management class from the University of the Free State.

Zané Dippenaar, a 30-year-old marketing and project manager at a Cape Town-based solar energy company, is the youngest person in this year’s graduating class to earn a Doctor of Philosophy (PhD) in Business Management degree from the University of the Free State this year.  

But despite this achievement, the newly minted Dr Dippenaar says she would not have predicted she would study her way to PhD level. 

“I wasn’t particularly academically driven before tertiary education, but I knew from early on that I wanted to either become a teacher or pursue something in the world of business,” she says. Her natural ability and her family’s encouragement led her to explore entrepreneurship and marketing, which she soon developed a passion for.

 

Overcoming challenges and finding support

Dr Dippenaar’s academic journey was marked by significant challenges, including balancing work and study commitments. However, she credits her supervisors and family for helping her stay motivated. 

Her dissertation, titled ‘Advertising and Brand Loyalty in the South African Solar Industry’, showcases her expertise in marketing and branding.

“There were moments filled with doubt, setbacks, and exhaustion, but I was fortunate to have a strong support system who continuously encouraged me and reminded me of what I was working towards,” she says.

 

Achieving a personal milestone

Dr Dippenaar’s PhD achievement is not only an academic milestone but also a personal triumph. She had set a goal of completing her PhD before turning 30 and achieved it just weeks before her birthday. “That was a personal milestone I had set for myself, and achieving it was incredibly fulfilling,” she says. 

She plans to apply the knowledge she gained in the industry and potentially return to academia. She advises younger students to trust their instincts and start their academic journey without waiting for perfection.

“Don’t wait until you’re ‘ready’ – you never will be. Just start. Surround yourself with people who believe in you, ask for help when you need it, and take it one chapter at a time,” she advises.

 

A role model for others

Dr Dippenaar hopes to inspire others, particularly young women, by showing that success in academia doesn’t follow a one-size-fits-all formula. “I hope my story demonstrates that with the right support, determination, and a willingness to carve your own path, anything is possible.”

The University of the Free State is proud to have played a role in Dippenaar’s academic journey, fostering her growth and expertise in business management. Her achievement is a testament to the institution’s commitment to academic excellence and innovation.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept