Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 April 2025 | Story Onthatile Tikoe | Photo Onthatile Tikoe
Zane Dippenaar
Dr Zané Dippenaar (30) is the youngest PhD graduate in this year’s Business Management class from the University of the Free State.

Zané Dippenaar, a 30-year-old marketing and project manager at a Cape Town-based solar energy company, is the youngest person in this year’s graduating class to earn a Doctor of Philosophy (PhD) in Business Management degree from the University of the Free State this year.  

But despite this achievement, the newly minted Dr Dippenaar says she would not have predicted she would study her way to PhD level. 

“I wasn’t particularly academically driven before tertiary education, but I knew from early on that I wanted to either become a teacher or pursue something in the world of business,” she says. Her natural ability and her family’s encouragement led her to explore entrepreneurship and marketing, which she soon developed a passion for.

 

Overcoming challenges and finding support

Dr Dippenaar’s academic journey was marked by significant challenges, including balancing work and study commitments. However, she credits her supervisors and family for helping her stay motivated. 

Her dissertation, titled ‘Advertising and Brand Loyalty in the South African Solar Industry’, showcases her expertise in marketing and branding.

“There were moments filled with doubt, setbacks, and exhaustion, but I was fortunate to have a strong support system who continuously encouraged me and reminded me of what I was working towards,” she says.

 

Achieving a personal milestone

Dr Dippenaar’s PhD achievement is not only an academic milestone but also a personal triumph. She had set a goal of completing her PhD before turning 30 and achieved it just weeks before her birthday. “That was a personal milestone I had set for myself, and achieving it was incredibly fulfilling,” she says. 

She plans to apply the knowledge she gained in the industry and potentially return to academia. She advises younger students to trust their instincts and start their academic journey without waiting for perfection.

“Don’t wait until you’re ‘ready’ – you never will be. Just start. Surround yourself with people who believe in you, ask for help when you need it, and take it one chapter at a time,” she advises.

 

A role model for others

Dr Dippenaar hopes to inspire others, particularly young women, by showing that success in academia doesn’t follow a one-size-fits-all formula. “I hope my story demonstrates that with the right support, determination, and a willingness to carve your own path, anything is possible.”

The University of the Free State is proud to have played a role in Dippenaar’s academic journey, fostering her growth and expertise in business management. Her achievement is a testament to the institution’s commitment to academic excellence and innovation.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept